检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xie Zhinan Zheng Yonglu Paul Cristini Zhang Xubin
机构地区:[1]Key Laboratory of Earthquake Engineering and Engineering Vibration,Institute of Engineering Mechanics,China Earthquake Administration,Harbin 150080,China [2]Key Laboratory of Earthquake Disaster Mitigation,Ministry of Emergency Management,Harbin 150080,China [3]Aix Marseille University,CNRS,Centrale Marseille,LMA,Marseille F-13353,France
出 处:《Earthquake Engineering and Engineering Vibration》2023年第2期407-421,共15页地震工程与工程振动(英文刊)
基 金:Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2021EEEVL0102;National Natural Science Foundation of China under Grant Nos.U2039209 and 51808516;the National Key R&D Program of China under Grant No.2018YFC1504004;Distinguished Young Scholars Program of the Natural Science Foundation of Heilongjiang province,China under Grant No.YQ2020E005。
摘 要:Multi-axial perfectly matched layer(M-PML),known to have lost the perfect-matching property owing to multi-axial coordinate stretching,has been numerically validated to be long-time stable and it is thus used extensively in linear anisotropic wave simulation and in isotropic cases where the PML becomes unstable.We are concerned with the construction of the M-PML for anisotropic wave simulation based on a second order wave equation implemented with the displacement-based numerical method.We address the benefit of the incorrect chain rule,which is implicitly adopted in the previous derivation of the M-PML.We show that using the frequency-shifted stretching function improves the absorbing efficiency of the M-PML for near-grazing incident waves.Then,through multi-axial complex-coordinate stretching the second order anisotropic wave equation in a weak form,we derive a time-domain multi-axial unsplit frequency-shifted PML(M-UFSPML)using the frequency-shifted stretching function and the incorrect chain rule.A new approach is provided to reduce the number of memory variables needed for computing convolution terms in the M-UFSPML.The obtained M-UFSPML is well suited for implementation with a finite element or the spectral element method.By providing several typical examples,we numerically verify the accuracy and long-time stability of the implementation of our M-UFSPML by utilizing the Legendre spectral element method.
关 键 词:computational seismology seismic anisotropy wave propagation ELASTODYNAMICS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.239.73