检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈龙 曾凯[2] 李莎[1] 陶璐 梁玮 王皓岑 杨如美 CHEN Long;ZENG Kai;LI Sha;TAO Lu;LIANG Wei;WANG Haocen;YANG Rumei(School of Nursing,Nanjing Medical University,Nanjing 211166,China;School of Nursing,Southern Medical University,Guangzhou 510515,China;School of Nursing,Purdue University,Indiana 47907,USA)
机构地区:[1]南京医科大学护理学院,江苏省南京市211166 [2]南方医科大学护理学院,广东省广州市510515 [3]School of Nursing,Purdue University,Indiana 47907,USA
出 处:《中国全科医学》2023年第19期2423-2427,共5页Chinese General Practice
基 金:国家自然科学基金资助项目(72004098,72204117);江苏高校哲学社会科学研究一般项目(2020SJA0302);南京医科大学高层次引进人才项目(NMUR2020006);南京医科大学研究生优质教育资源建设项目(2021F005);南京医科大学内涵建设专项护理学优势学科资助;江苏高校优势学科建设工程项目“护理学”(苏政办发[2018]87号);“十四五”高等教育科学研究规划课题(苏高教会[2021]16号YB009)。
摘 要:随着信息技术的发展,人工智能为疾病诊疗带来重要价值。然而,人工智能中存在算法偏见现象,可导致医疗卫生资源分配不均等问题,严重损害患者的健康公平。算法偏见是人为偏见的技术化体现,其形成与人工智能开发过程密切相关,主要源于数据收集、训练优化和输出应用3个方面。医护工作者作为患者健康的直接参与者,应采取相应措施以预防算法偏见,避免其引发健康公平问题。医护工作者需保障健康数据真实无偏见、优化人工智能的公平性和加强其输出应用的透明度,同时需思考如何处理临床实践中算法偏见引发的不公平现象,全面保障患者健康公平。本研究就健康领域中算法偏见的形成原因和应对策略展开综述,以期提高医护工作者识别和处理算法偏见的意识与能力,为保障信息化时代中的患者健康公平提供参考。With the development of information technology,artificial intelligence shows great potentials for clinical diagnosis and treatment.Nevertheless,bias in algorithms derived by artificial intelligence can lead to problems such as unequal distribution of healthcare resources,which significantly affect patients'health equity.Algorithmic bias is a technical manifestation of human bias,whose formation strongly correlates with the entire development process of artificial intelligence,starting from data collection,model training and optimization to output application.Healthcare providers,as the key direct participants in ensuring patients'health,should take corresponding measures to prevent algorithmic bias to avoid its related health equity issues.It is important for healthcare providers to ensure the authenticity and unbiasedness of health data,optimize the fairness of artificial intelligence,and enhance the transparency of its output application.In addition,healthcare providers need to consider how to tackle bias-related health inequity,so as to comprehensively ensure patients'health equity.In this study,we reviewed the causes and coping strategies related to algorithmic bias in healthcare,with the aim of improving healthcare providers'awareness and ability to identify and address algorithmic bias,and laying a foundation for ensuring patients'health equity in the information age.
分 类 号:R19[医药卫生—卫生事业管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222