机构地区:[1]海军军医大学长征医院影像科,上海200003 [2]海军军医大学东方肝胆医院医疗保障中心医学工程科,上海200438 [3]数坤(北京)网络科技有限公司,北京100102
出 处:《放射学实践》2023年第4期419-425,共7页Radiologic Practice
基 金:国家自然科学基金面上项目(82271994);国家自然科学基金面上项目(81871405);申康能力提升项目(SHDC22022310-B);军委面上项目(22BJZ07);国家卫生健康委放射影像数据库建设项目(YXFSC2022JJSJ010);上海长征医院青年启动基金(2022QN091)。
摘 要:目的:以门控CT为标准,探讨基于深度学习的非门控冠状动脉钙化积分(DL-CACS)模型在不同CT重建算法下对心血管风险分类效能。方法:回顾性将在本院同时接受门控心脏CT和非门控低剂量胸部CT(LDCT)检查的549例患者纳入本研究。根据扫描方式(心电门控和非门控),将所有患者的图像资料分为A、B两组。对B组图像数据分别使用smooth、standard及sharp算法进行重建(作为B1、B2和B3组),并导入DL-CACS模型进行分析,获得CACS及心血管风险分类结果。以医师基于A组图像手工测量的CACS为标准,采用符合率、Bland-Altman法及组内相关系数(ICC)对3种CT重建算法下获得的DL-CACS进行分析。依据CACS(0、1~99、100~400和>400)将患者的心血管风险分为4个标准类别(1~4类,分别对应无、低、中和高风险),利用Kappa检验、受试者工作特征(ROC)曲线下面积(AUC)比较不同重建算法下DL-CACS与标准CACS对患者心血管风险分层的差异。结果:B1、B2和B3组的DL-CACS与A组之间的一致性均较好,其中以B1组最好[ICC=0.955(95%CI:0.947~0.962)]。B1、B2和B3组中模型所获得的心血管风险分层与A组之间的一致性均较好,Kappa值分别为0.839、0.827和0.770(P均<0.001),其中B1组评估高危患者的AUC最高(AUC=0.995,P<0.001)。Bland-Altman图(A组分别与B1、B2和B3组的CACS进行配对比较)显示,B1组与A组之间CACS平均差值为-0.173(95%CI:-1.748~1.402),B1组CACS超出95%一致性界限的患者数最少。结论:非门控DL-CACS模型在不同CT重建算法下均能准确地评估CACS及风险分层,而在LDCT时选择smooth重建算法,能最大程度地提高对冠脉钙化程度的评估准确性。Objective:The purpose of this study was to investigate the cardiovascular risk classification performance of the deep learning-based non-gated coronary artery calcium scoring(DL-CACS)model under different CT reconstruction kernels using ECG-gated CT as the standard.Methods:549 patients who received both ECG-gated CT and non-gated low-dose chest CT(LDCT)in our hospital were retrospectively collected.All subjects were divided into two groups:group A was with ECG-gated trigger scan,and group B was with non-gated.The images in group B were reconstructed using smooth,standard and sharp kernel(named as B1,B2 and B3 sub-groups),and imported into the DL-CACS model for analysis,and the results of CACS and cardiovascular risk classification were recorded.Taking the CACS of group A measured manually as the standard,DL-CACS obtained from different CT reconstructed kernels were analyzed using coincidence rate,ICC and Bland-Altman map.According to CACS(0,1~99,100~400,and>400),the patients'cardiovascular risk was divided into four stan-dard categories(1~4 grade,corresponding to none,low,moderate and high risk).Kappa test and area under receiver operating characteristic(ROC)curve(AUC)were used to compare the difference between DL-CACS and standard CACS in cardiovascular risk stratification of the patients under different reconstruction algorithms.Results:DL-CACS in groups B1,B2 and B3 were consistent with those in group A,among which group B1 was the best(ICC=0.955,95%CI:0.947~0.962).The cardiovascular risk classification obtained by the model in groups B1,B2 and B3 showed great consistency with that in group A,with Kappa values of 0.839,0.827 and 0.770(all P<0.001),among which the AUC of high-risk patients assessed in group B1 was the highest(AUC=0.995,P<0.001).Meanwhile,Bland-Altman plot(comparison of CACS in group A with those in groups B1,B2 and B3,respectively)showed that the mean difference of CACS between group B1 and group A was-0.173(95%CI:-1.748~1.402),and the number of patients with CACS exceeding the 95%congenial bou
关 键 词:冠状动脉钙化 体层摄影术 X线计算机 深度学习 心血管风险分层
分 类 号:R814.42[医药卫生—影像医学与核医学] R543.3[医药卫生—放射医学] R541.4[医药卫生—临床医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...