检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄斌[1] 王博文 陈辉[1,2] 陆晨光[1] HUANG Bin;WANG Bowen;CHEN Hui;LU Chenguang(School of Civil Engineering and Architecture,Wuhan University of Technology,Wuhan 430070,China;The College of Post and Telecommunication,Wuhan Institute of Technology,Wuhan 430073,China)
机构地区:[1]武汉理工大学土木工程与建筑学院,武汉430070 [2]武汉工程大学邮电与信息工程学院,武汉430073
出 处:《哈尔滨工业大学学报》2023年第5期98-106,共9页Journal of Harbin Institute of Technology
基 金:国家自然科学基金(51978545)。
摘 要:为了使用随机静力位移测量数据对结构有限元模型进行修正,并保证计算效率,提出了一种同伦代理模型与贝叶斯抽样方法结合的随机模型修正方法。首先以结构静力位移构建目标函数,然后采用延缓拒绝自适应抽样算法对修正参数的后验概率密度进行估计。抽样过程中,采用同伦代理模型替代有限元模型对结构静力位移进行计算。数值算例和试验结果表明:进行变截面梁的有限元模型修正时,与二次响应面模型相比,在静力贝叶斯模型方法中利用同伦代理模型,修正参数的后验概率密度能更准确地复现结构随机响应,使修正后的结构随机响应与测量结果概率密度函数更加吻合。即使在随机测量误差的变异系数较大、先验信息与真实修正参数之间差异较大时,所提方法仍能够快速得到修正参数的后验概率密度,使修正参数计算的结构随机位移响应与测量结果的概率密度函数保持一致。同伦代理模型结合贝叶斯抽样算法能在概率框架内快速而准确地对结构进行随机模型修正。To update the structural finite element model through stochastic static displacement measurement data and maintain the computational efficiency,we proposed a stochastic model updating method based on homotopy meta-model and Bayesian sampling method.First,the objective function was constructed by using the static displacement of the structure,and the delayed rejection adaptive sampling algorithm was used to estimate the posterior probability density of the updated parameters.In the process of sampling,the homotopy meta-model was adopted instead of the finite element model to calculate the static displacement of the structure.Numerical examples and test results show that when updating the finite element model of variable cross-section beam,as opposed to the quadratic response surface model,by incorporating the homotopy meta-model into the static Bayesian model method,the posterior probability density of the updated parameters could reproduce the stochastic response of the structure more accurately,making the probability density function of the stochastic response of the updated structure more consistent with that of the measured results.Even when the coefficient of variation of the stochastic measurement error was large and the difference between the prior information and the real updated parameters was large,the proposed method could quickly obtain the posterior probability density of the updated parameters,so that the probability density function of the structural stochastic displacement response calculated by the updated parameters was consistent with that of the measured results.The homotopy meta-model combined with Bayesian sampling algorithm can update the stochastic model of the structure quickly and accurately within the probability framework.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7