检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜中华 DU Zhonghua(Shijiazhuang Campus of Army Engineering University,Shijiazhuang 050003,China)
出 处:《机械工程师》2023年第4期34-37,共4页Mechanical Engineer
摘 要:自紧身管是一种重要的枪炮身管,自紧身管强度与其管壁内应力分布密切相关。为理解不同强度理论下自紧身管的应力状态,基于第三强度理论解析解、第四强度理论开端解析解、第四强度理开端半解析解、第四强度理论闭端解析解,对某火炮身管截面制造时、制造后和射击时应力分布进行了数值仿真。其中,第四强度理论开端解析解为复杂的隐式公式,需要迭代求解。仿真表明:不同强度理论下,自紧身管应力分布大致相似,只是第三强度理论采用treca屈服准则,第四强度理论采用mises屈服准则;第四强度理开端半解析解是对解析解的简化,但是应力分布不连续,属于第三和第四强度理论的混合;第四强度理论闭端解析解与第三强度理论解析解应力分布仅相差一个常系数。The self-tightening barrel is an important gun barrel.The strength of the self-tightening barrel is closely related to the stress distribution on the inner barrel wall.In order to understand the stress state of the self-tightening barrel under different strength theories,based on the analytical solution of the third strength theory,the open end analytical solution of the fourth strength theory,the open end semi analytical solution of the fourth strength theory,and the closed end analytical solution of the fourth strength theory,the stress distribution of a gun barrel section during manufacturing,after manufacturing and during firing is numerically simulated.Among them,the open end analytical solution of the fourth strength theory is a complex implicit formula,which needs to be solved iteratively.The simulation results show that the stress distribution of self-tight tube is similar under different strength theories.The main difference is Treca yield criterion is adopted for the third strength theory and Mises yield criterion is adopted for the fourth strength theory.The open end analytical solution of the fourth strength theory is a simplification of the analytical solution,but the stress distribution is discontinuous,which is a mixture of the third and fourth strength theories;There is only a constant coefficient difference between the closed end analytical solution of the fourth strength theory and the analytical solution of the third strength theory.
分 类 号:TJ302[兵器科学与技术—火炮、自动武器与弹药工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166