检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李云[1] 邱述金 赵华民 李晓斌[1] 张庆辉 原向阳[2] Li Yun
机构地区:[1]山西农业大学农业工程学院,山西太谷030801 [2]山西农业大学农学院,山西太谷030801
出 处:《江苏农业科学》2023年第6期168-177,共10页Jiangsu Agricultural Sciences
基 金:国家谷子高粱产业技术体系建设专项(编号:CARS-06-13.5-A28);山西省高等学校科技创新计划(编号:2021L141);山西农业大学博士科研启动项目(编号:2018YJ43);山西省基础研究计划(编号:20210302124374)。
摘 要:针对复杂谷田场景中谷穗密集、尺寸较小且遮挡严重的情况,适用于此环境的目标检测模型要求较高算力,在移动设备上实现谷穗实时检测存在困难等问题,本研究提出一种基于YoloV5的轻量化谷穗实时检测方法。将YoloV5s的主干特征提取网络替换成具有注意力机制的MobilenetV3轻量化模型,采用在多特征融合检测结构增加微尺度检测层,后处理使用Merge-NMS算法,将不同改进方法重构的模型在自建的谷穗数据集上进行训练和测试。结果表明,本研究改进的模型平均检测精度达到97.78%,F1分数为94.20%,模型大小仅为7.56 MB,每幅图像的平均检测时间为0.023 s,与经典目标检测模型比较,表现出较强的鲁棒性和泛化能力。本研究改进的轻量化YoloV5谷穗检测模型能克服复杂环境的影响,显著提高谷穗在密集分布及遮挡条件下的检测效果,为移动设备上实现谷穗实时检测提供技术参考。
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.128.223