Weakly supervised action anticipation without object annotations  

在线阅读下载全文

作  者:Yi ZHONG Jia-Hui PAN Haoxin LI Wei-Shi ZHENG 

机构地区:[1]School of Computer Science and Engineering,Sun Yat-sen University,Guangzhou 510006,China [2]Key Laboratory of Machine Intelligence and Advanced Computing,Ministry of Education,Guangzhou 510006,China

出  处:《Frontiers of Computer Science》2023年第2期101-110,共10页中国计算机科学前沿(英文版)

基  金:supported partially by the National Natural Science Foundation of China(NSFC)(Grant Nos.U1911401 and U1811461);Guangdong NSF Project(2020B1515120085,2018B030312002);Guangzhou Research Project(201902010037);Research Projects of Zhejiang Lab(2019KD0AB03);the Key-Area Research and Development Program of Guangzhou(202007030004).

摘  要:Anticipating future actions without observing any partial videos of future actions plays an important role in action prediction and is also a challenging task.To obtain abundant information for action anticipation,some methods integrate multimodal contexts,including scene object labels.However,extensively labelling each frame in video datasets requires considerable effort.In this paper,we develop a weakly supervised method that integrates global motion and local finegrained features from current action videos to predict next action label without the need for specific scene context labels.Specifically,we extract diverse types of local features with weakly supervised learning,including object appearance and human pose representations without ground truth.Moreover,we construct a graph convolutional network for exploiting the inherent relationships of humans and objects under present incidents.We evaluate the proposed model on two datasets,the MPII-Cooking dataset and the EPIC-Kitchens dataset,and we demonstrate the generalizability and effectiveness of our approach for action anticipation.

关 键 词:action anticipation weakly supervised learning relation modelling graph convolutional network 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象