Human-machine interactive streaming anomaly detection by online self-adaptive forest  

在线阅读下载全文

作  者:Qingyang LI Zhiwen YU Huang XU Bin GUO 

机构地区:[1]School of Computer Science,Northwestern Polytechnical University,Xi'an 710129,China

出  处:《Frontiers of Computer Science》2023年第2期145-156,共12页中国计算机科学前沿(英文版)

基  金:supported in part by the National Science Fund for Distinguished Young Scholars(61725205);the National Natural Science Foundation of China(Grant Nos.61960206008,61772428,61972319,and61902320).

摘  要:At nomaly detectors are used to distinguish differences between normal and abnormal data,which are usually implemented by evaluating and ranking the anomaly scores of each instance.A static unsupervised streaming anomaly detector is difficult to dynamically adjust anomaly score calculation.In real scenarios,anomaly detection often needs to be regulated by human feedback,which benefits adjusting anomaly detectors.In this paper,we propose a human-machine interactive streaming anomaly detection method,named ISPForest,which can be adaptively updated online under the guidance of human feedback.In particular,the feedback will be used to adjust the anomaly score calculation and structure of the detector,ideally attaining more accurate anomaly scores in the future.Our main contribution is to improve the tree-based streaming anomaly detection model that can be updated online from perspectives of anomaly score calculation and model structure.Our approach is instantiated for the powerful class of tree-based streaming anomaly detectors,and we conduct experiments on a range of benchmark datasets.The results demonstrate that the utility of incorporating feedback can improve the performance of anomaly detectors with a few human efforts.

关 键 词:anomaly detection human-machine interaction human feedback random space tree ensemble method 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象