非正交多址可见光通信系统SAMP信道估计  被引量:5

SAMP Channel Estimation Method of Non-orthogonal Multiple AccessVisible Light Communication System

在线阅读下载全文

作  者:童育龙 张峰[1] 沈波[2] 赵黎[1] TONG Yulong;ZHANG Feng;SHEN Bo;ZHAO Li(Xi’an Technology University,Xi’an 710021,China;Xi’an Institute of Mechanical and Information Technology,Xi’an 710065,China)

机构地区:[1]西安工业大学,陕西西安710021 [2]西安机电信息技术研究所,陕西西安710065

出  处:《探测与控制学报》2023年第2期79-86,共8页Journal of Detection & Control

基  金:国家自然科学基金项目(12004292);陕西省科技厅一般项目(2022GY-072);西安市科技计划项目(2020KJRC0040)。

摘  要:室内非正交多址可见光通信(NOMA-VLC)信道估计的最小二乘法(LS)存在导频占比高、可靠性低、用户公平性难以保证等问题。针对信道稀疏化特点,利用压缩感知(CS)对信道估计算法进行稀疏化处理,减少导频使用,提高通信效率。在此基础上,结合稀疏度自适应匹配追踪算法(SAMP)进行信道冲激响应估计,消除信道对信号传输的影响以提高可靠性,并降低信道差异所带来的用户间性能差异。实验结果表明,2用户系统中算法可利用更少的导频占比获得优于LS算法的信道估计性能,且前端调制阶次越高,相较于LS算法对系统通信性能的改善越明显。The least square(LS)method for indoor non-orthogonal multiple access visible light communication(NOMA-VLC)channel estimation has some problems,such as high pilot ratio,low reliability,and difficult to guarantee user fairness.According to the characteristics of channel sparsity,this paper sparsely processed the process of channel estimation based on compressed sensing(CS)to reduce the use of pilots and improve the communication efficiency.On this basis,the sparsity adaptive matching pursuit(SAMP)algorithm was used to estimate the channel impulse response,so as to eliminate the influence of channel on signal transmission to improve reliability and reduce the performance difference between users caused by channel difference.The experimental results showed that the proposed algorithm could obtain better channel estimation performance than the LS algorithm with fewer pilots in a 2-user system,and the higher the modulation order of the front end,the better communication performance of the proposed algorithm compared with the LS algorithm.

关 键 词:可见光通信 非正交多址接入 压缩感知 可靠性 用户公平性 

分 类 号:TN929.1[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象