检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵苏杰 柴睿均 郭少勇[1] 吴双 王智立[1] 邱雪松[1] SHAO Sujie;CHAI Ruijun;GUO Shaoyong;WU Shuang;WANG Zhili;QIU Xuesong(State Key Laboratory Of Networking And Switching Technology,Beijing University of Posts and Telecommunications,Beijing 100876,China;State Grid Ningxia Electric Power Co,.Ltd,Yinchuan 750001,China)
机构地区:[1]北京邮电大学网络与交换技术国家重点实验室,北京100876 [2]国网宁夏电力有限公司,银川750001
出 处:《电子与信息学报》2023年第4期1154-1162,共9页Journal of Electronics & Information Technology
基 金:国家自然科学基金(62071070);教育部区块链重点项目(KJ010802)。
摘 要:近年来智慧公路为用户提供了道路监测、辅助驾驶等新型服务,但随之而来的是数据流量爆炸式的增长,这对网络的承载能力带来了极大的考验。随着5G和移动边缘计算技术的成熟,海量任务不必集中在云端处理,边缘侧的协同处理成为一种较好的选择。为了在车辆高速移动场景下为用户提供高效可靠的服务,该文提出一种基于位置预测的智慧公路边缘任务协同(CETLP)机制。首先,结合智慧公路场景下车辆运动特点,建立面向时延和负载均衡的边缘任务协同模型。进而,针对任务时延最小化以及网络负载均衡等目标,提出一种基于深度强化学习的边缘任务协同算法,对海量任务的协同策略进行求解。仿真结果表明,所提机制能够在保证网络负载均衡的情况下降低服务时延。In recent years new services such as road monitoring and assisted driving in smart highways have been proposed,but the explosive growth of data traffic has also emerged,which has brought a great test to the carrying capacity of the network.With the maturity of 5G and mobile edge computing technology,massive tasks do not have to be processed centrally in the cloud,and edge-side co-processing becomes a better choice.In order to provide efficient and reliable services for users in the vehicle high-speed mobile scenario,a Collaboration of Edge Tasks based on Location Prediction(CETLP)is proposed in this paper.First,a delay and load balancing-oriented edge task collaboration model is established by combining the vehicle movement characteristics in the smart highway scenario.Then,a deep reinforcement learning-based edge task collaboration algorithm is proposed to solve the collaboration strategy for a large number of tasks with the objectives of task delay minimization and network load balancing.Simulation results show that the proposed mechanism can reduce the service delay while ensuring the network load balancing.
关 键 词:移动边缘计算 边缘协同 深度强化学习 智慧公路 位置预测
分 类 号:TN915[电子电信—通信与信息系统] TP393[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.230.138