检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴东昊 马春梅[1] 武盼盼 孙华志[1] 王佳宇 房一阁 WU Donghao;MA Chunmei;WU Panpan;SUN Huazhi;WANG Jiayu;FANG Yige(College of Computer and Information Engineering,Tianjin Normal University,Tianjin 300387,China)
机构地区:[1]天津师范大学计算机与信息工程学院,天津300387
出 处:《天津师范大学学报(自然科学版)》2023年第2期74-80,共7页Journal of Tianjin Normal University:Natural Science Edition
基 金:天津市教委科研计划资助项目(2018KJ155).
摘 要:本文从图(graph)的角度出发,提出基于车载传感器时空图卷积的驾驶行为识别模型.首先,通过挖掘传感器间的关联性构建传感器的图结构;其次,基于时间信息融合策略的不同,提出基于LSTM的层级时空图卷积网络(H-STGCN)和修正的时空图卷积网络(M-STGCN),用于捕捉传感器的时空相关性进行驾驶行为识别;最后,在公开的2个驾驶行为数据集上进行实验,结果表明H-STGCN模型的识别效果优于现有方法.A driving behavior recognition model based on spatio-temporal graph convolution of vehicle sensors is proposed from the perspective of graph.Firstly,graph structure representation of sensors is constructed by mining the relevance of the vehicle sensors.Secondly,based on the different strategies of the time information fusion,double layer LSTM based hierarchical spatio-temporal graph convolutional network(H-STGCN)and modified spatio-temporal graph convolutional network(M-STGCN)are proposed,which can capture the temporal and spatial relevance of sensors for the driving behavior recognition.Finally,the experiment is conducted on two currently published driving behavior data sets,and the results show that the recognition effect of H-STGCN model is better than the existing methods.
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.254