检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾奥迪 杨静[1] ZENG Ao-di;YANG Jing(College of Information Engineering,Shanghai Maritime University,Shanghai 201306,China)
出 处:《计算机工程与设计》2023年第4期1014-1020,共7页Computer Engineering and Design
基 金:国家自然科学基金项目(61902239)。
摘 要:为降低H.266/VVC(versatile video coding)帧内编码复杂度,提出一种基于纹理分类的卷积注意力机制神经网络CBAM-CNN(convolutional block attention module-convolution neural network)模型的快速帧内编码单元划分方法,替代嵌套多类型四叉树QTMT(quadtree with nested multi-type tree)的遍历搜索。综合考虑每个编码单元CU(codinguint)纹理特征,建立基于阈值的纹理分类模型,判断64×64的编码单元是否划分;设计并训练一种CBAM-CNN网络模型,预测32×32,16×16CU的划分结果。仿真结果表明,所提算法使帧内编码时间平均减少43.217%,编码比特率仅增加0.894%,有效降低了帧内预测的编码复杂度。To reduce the intra coding complexity of H.266/VVC(versatile video coding),a fast intra coding unit partition method of CBAM-CNN(convolutional block attention module convolution neural network)model based on texture classification was proposed to replace the mandatory QTMT(quadtree with nested multi-type tree)search.Considering the relationship between CU depth,quantization parameters and texture complexity,a threshold-based texture classification model was established to determine whether 64×64 sized coding units needed to be divided.CBAM-CNN network model was designed and trained to predict 32×32,16×16 sized CTU division result.Simulation experimental results show that the average intra-frame coding time can be reduced by 43.217%,while BDBR only increases by 0.894%,which effectively reduces the coding complexity of intra prediction.
关 键 词:帧内预测 纹理复杂度 阈值分类 编码块划分 嵌套多类型四叉树划分 注意力机制 编码复杂度
分 类 号:TN919.81[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.164.78