QoS约束下的5G网络降噪算法设计  

Design of 5G Network Noise Reduction Algorithm Under QoS Constraints

在线阅读下载全文

作  者:李栋[1] LI Dong(The Computer Engineering College of Jimei University,Xiamen 361000,China)

机构地区:[1]集美大学计算机工程学院,福建厦门361000

出  处:《长春师范大学学报》2023年第4期54-58,共5页Journal of Changchun Normal University

摘  要:超密集网络中高密度微站部署技术显著提升了5G网络带宽。该技术的优势可助力大规模移动台接入,然而持续增加的微站接入点和移动台将引发累积性微站分区互扰。针对该问题提出一种降噪算法,以保证移动台接入平滑性和全网服务质量。算法在初始阶段通过评估无线接入代价为移动台适配虚拟分区,根据信道衰耗模型为微站自适应部署工作频率。针对移动台、接入点和移动台持续增加规模而引发的分区互扰问题,算法引入参考信号值峰值计算机制来确定分区的归并重组方案,并以信噪比衡量分区的归并成效。考察结果表明,在应对大规模移动台接入或持续增加接入点、移动台的情形下,降噪算法表现出了良好普适性,有效保证了接入平滑性和全网服务质量。High density micro-station deployment technology in ultra dense network significantly improves 5G network bandwidth.This technical advantage can help large-scale mobile station(MS)access.However,the continuous increase of micro-station access points(AP)and MS will cause cumulative micro-station partition interference.To solve this problem,a noise reduction algorithm is proposed to ensure the smoothness of MS Access and the quality of service(QoS)of the whole network.In the initial stage,the algorithm adapts the virtual partition for MS by evaluating the wireless access cost,and adaptively deploys the working frequency for micro-station according to the channel attenuation model.Aiming at the problem of partition mutual interference caused by the continuous increase of the scale of MS,AP and MS,the algorithm introduces the reference signal received power(RSRP)peak computer system to determine the partition merging and reorganization scheme,and uses the signal noise ratio(SNR)to measure the partition merging effect.The investigation results show that when dealing with large-scale ms access or continuously increasing AP and MS,the noise reduction algorithm shows good universality and effectively ensures the access smoothness and QoS of the whole network.

关 键 词:微站 接入 分区 归并 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象