检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘伟 王亮 LIU Wei;WANG Liang(School of Medical Information&Engineering of Xuzhou Medical College,Xuzhou Jiangsu 221000,China)
机构地区:[1]徐州医科大学医学信息与工程学院,江苏徐州221000
出 处:《计算机仿真》2023年第3期219-223,共5页Computer Simulation
基 金:全国高等院校计算机基础教育教学研究项目(2021-AFCEC-102)。
摘 要:已有人脸表情智能识别方法存在图像遗漏、识别速度慢、以及表情易混淆的问题,导致识别正确率低,且不适用于多人脸识别。为解决上述问题,提出小规模数据多角度人脸表情人工智能识别方法。结合去噪自编码器、稀疏自编码器及普通自编码器组成具有5层网络结构的堆栈式混合自编码器。在网络结构中训练数据样本,并对样本完成微调、权重初始化和更新。再结合粒子群优化分类器识别表情,将粒子最优值带入人脸表情识别目标函数,获得判定表情的决策矩阵,完成人脸表情人工智能识别。仿真结果表明,所提方法识别多人表情识别时无遗漏,且识别速度快、精度高、人脸表情不易混淆。In this paper,an artificial intelligence recognition method of multi-angle facial expressions based on small-scale data was proposed.Denoising Auto-Encoder(DAE),Sparse Auto-Encoder(SAE)and Ordinary Auto-Encoder(OAE)were used to construct a Stacked Hybrid Auto-Encoder(SHAE)with a five-layer network structure.Data samples were trained in this network structure.Moreover,these samples were fine-tuned,weight-initialized and updated.A particle swarm optimization classifier was used to recognize expressions,the optimal particle value was introduced into the objective function of facial expression recognition,so that the decision matrix to determine expression was obtained.After that,the artificial intelligence recognition of facial expressions was completed.Simulation results prove that the proposed method has no omission when recognizing multiple persons'expressions,with high recognition speed and accuracy.Moreover,the facial expressions are not easy to be confused.
关 键 词:人脸表情智能识别 堆栈式混和自编码器 去噪自编码器 稀疏自编码器 粒子群优化分类器
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.14.123.251