基于联合加权的广义二次相关时延估计算法  被引量:9

Generalized Secondary Correlation Delay Estimation Algorithm Based on Joint Weighting

在线阅读下载全文

作  者:余萍 杨乘[1] 王紫薇 胡健[2] YU Ping;YANG Cheng;WANG Zi-wei;HU Jian(College of physical and Electronic Sciences,Guizhou Normal University,Guiyang Guizhou 550025,China;Guizhou Industry Polytechnic College,Guiyang Guizhou 551400,China)

机构地区:[1]贵州师范大学物理与电子科学学院,贵州贵阳550025 [2]贵州工业职业技术学院,贵州贵阳551400

出  处:《计算机仿真》2023年第3期400-404,共5页Computer Simulation

基  金:国家自然科学基金项目(62062025);贵州省科学技术基金重点项目(黔科合基础[2019]1432);贵州省科学技术基金人才项目(黔科合平台人[2017]5726-60);贵州师范大学资助博士科研项目(GZNUD[2017]32号)。

摘  要:现有的时延估计算法在低信噪比条件下时延估计值与真实值误差较大,而时延估计的准确性直接影响声源定位的最终结果,于是提出一种联合加权的广义二次相关时延估计算法。通过在已有的广义二次相关算法的基础上,对其加权函数进行改进,联合相位变换(PHAT)和平滑相干变换(SCOT)函数,得到新的广义加权函数:SCOT/PHAT。在MATLAB中设计了基于麦克风阵列的时延估计和声源定位的仿真,并与传统的PHAT加权和基于广义二次相关的SCOT加权算法对比,结果表明,在低信噪比环境下,改进算法能得到较高的时延估计精度。The existing time delay estimation algorithms have a large error between the estimated value of time delay and the real value under the condition of low SNR,and the accuracy of time delay estimation directly affects the final result of acoustic source location.Therefore,a joint weighted generalized quadratic correlation time delay estimation algorithm is proposed..Based on the existing generalized secondary correlation algorithm,a new generalized weighting function,SCOT/PHAT,was obtained by improving its weighting function and combining phase transform(PHAT)and smooth coherence transform(SCOT).The simulation experiments of time delay estimation and sound source location based on microphone array were designed using MATLAB,and compared with the traditional PHAT weighted algorithm and SCOT weighted algorithm based on generalized secondary correlation.The results show that the improved algorithm can obtain higher time delay estimation accuracy in low SNR environment.

关 键 词:麦克风阵列 时延估计 广义二次相关 联合加权 声源定位 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象