检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋辉 格日乐 田炜 SONG Hui;GE Ri-le;TIAN Wei(College of Mechanical and Electrical Engineering,Hulunbuir University,Hulunbeier Inner Mongolia 021008,China;Engineering Research Center for Safe Exploitation and Comprehensive Utilization of Mineral Resources at Universities of Inner Mongolia Autonomous Region,Hulunbeier Inner Mongolia 021008,China;China University of Petroleum,Beijing,School of Mechanical and Transportation Engineering,Beijing 102249,China)
机构地区:[1]呼伦贝尔学院机电工程学院,内蒙古呼伦贝尔021008 [2]内蒙古自治区高校矿产资源安全开采与综合利用工程研究中心,内蒙古呼伦贝尔021008 [3]中国石油大学(北京)机械与储运工程学院,北京102249
出 处:《计算机仿真》2023年第3期499-503,共5页Computer Simulation
基 金:2022年内蒙古自治区高等学校科学研究重点项目(NJZZ22296);2021年呼伦贝尔学院重点专项课题(2021KZZD03);2021年度呼伦贝尔学院专项课题(2021KZYB02)。
摘 要:矿山大型固定机械,如提升机和主通风机等是煤矿安全生产的至关重要设备。由于矿山机械的工作环境非常恶劣,机械故障点比较隐蔽,且故障原因具有多样性特征,导致诊断难度较高。提出基于深度学习的矿山机械集群故障智能诊断方法。利用深度学习中的卡尔曼滤波对矿山机械集群振动信号完成降噪处理。利用深度神经网络中的卷积核提取故障信号特征,将提取的特征输入到深度神经网络模型中计算出准则函数。根据准则函数实现故障类型聚类处理,输出故障分类结果,完成矿山机械集群故障的智能诊断。实验结果表明,所研究方法的智能诊断准确率可稳定在95%以上,故障诊断的耗时平均为45.3ms,机械设备集群故障诊断的振动信号频率与实际信号完全一致。Large fixed machines in mines are very important equipment for safety production.Because the working environment of mining machinery is very bad,the fault points are relatively hidden,resulting in high diagnostic difficulty.In this paper,an intelligent method of fault diagnosis of mining machinery cluster was presented based on deep learning.Firstly,the Kalman filter in deep learning was used to reduce the noise from the vibration signal of the mining machinery cluster.Secondly,the convolution kernel in the deep neural network was used to extract the fault signal features,and then these features were input into the deep neural network model for calculating the criterion function.Based on the criterion function,the fault types were clustered.Finally,the fault classification results were out.Thus,the intelligent fault diagnosis of the mining machinery cluster was achieved.Experimental results show that the intelligent diagnosis accuracy of the proposed method can be stabilized at 95%,and the average time required in fault diagnosis is 45.3ms.Meanwhile,the frequency of the vibration signal of fault diagnosis of mechanical devices is completely consistent with the actual signal.
关 键 词:信号降噪 深度卷积模型 二维滤波器 加权无向网络集合 准则函数
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28