检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:许玉格[1] 钟铭 吴宗泽 任志刚 刘伟生 XU Yu-Ge;ZHONG Ming;WU Zong-Ze;REN Zhi-Gang;LIU Wei-Sheng(School of Automation Science and Engineering,South China University of Technology,Guangzhou 510006;School of Electromechanical and Control Engineering,Shenzhen University,Shenzhen 518000;Guangdong Provincial Laboratory of Artificial Intelligence and Digital Economy(Shenzhen),Shenzhen 518000;Guangdong Discrete Manufacturing Knowledge Automation Engineering Technology Research Center,Guangzhou 510006;Shenzhen Hesi Zhongcheng Technology Co.,Ltd.,Shenzhen 518000)
机构地区:[1]华南理工大学自动化科学与工程学院,广州510006 [2]深圳大学机电与控制工程学院,深圳518000 [3]人工智能与数字经济广东省实验室(深圳),深圳518000 [4]广东省离散制造知识自动化工程技术研究中心,广州510006 [5]深圳禾思众成科技有限公司,深圳518000
出 处:《自动化学报》2023年第4期857-871,共15页Acta Automatica Sinica
基 金:国家自然科学基金(61703114,61673126,U1701261,51675108)资助。
摘 要:布匹瑕疵检测是纺织工业中产品质量评估的关键环节,实现快速、准确、高效的布匹瑕疵检测对于提升纺织工业的产能具有重要意义.在实际布匹生产过程中,布匹瑕疵在形状、大小及数量分布上存在不平衡问题,且纹理布匹复杂的纹理信息会掩盖瑕疵的特征,加大布匹瑕疵检测难度.本文提出基于深度卷积神经网络的分类不平衡纹理布匹瑕疵检测方法(Detecting defects in imbalanced texture fabric based on deep convolutional neural network,ITF-DCNN),首先建立一种基于通道叠加的ResNet50卷积神经网络模型(ResNet50+)对布匹瑕疵特征进行优化提取;其次提出一种冗余特征过滤的特征金字塔网络(Filter-feature pyramid network,F-FPN)对特征图中的背景特征进行过滤,增强其中瑕疵特征的语义信息;最后构造针对瑕疵数量进行加权的MFL(Multi focal loss)损失函数,减轻数据集不平衡对模型的影响,降低模型对于少数类瑕疵的不敏感性.通过实验对比,提出的方法能有效提升布匹瑕疵检测的准确率及定位精度,同时降低了布匹瑕疵检测的误检率和漏检率,明显优于当前主流的布匹瑕疵检测算法.Fabric defect detection is a key part of product quality assessment in the textile industry.Achieving fast,accurate and efficient fabric defect detection is of great significance for improving the productivity of the textile industry.In the production process of fabric,imbalance exists in the shape,size and quantity distribution of fabric defects,and the complex texture information of the jacquard fabric will cover the characteristics of the defect,which makes it difficult to detect fabric defects.This paper proposes a method for detecting defects in imbalanced texture fabric based on deep convolutional neural network(ITF-DCNN).First,an improved ResNet50 convolutional neural network model(ResNet50+)based on channel concatenate is established to optimize the fabric defect features.Second,F-FPN(filter-feature pyramid network)method for filtering redundant feature is proposed to filter the background features in the feature maps and enhance the semantic information of defect features.Finally,a MFL(multi focal loss)function weighted with the number of defects is construct to reduce the impact of imbalance on the model,and reduce the model's insensitivity to a small number of defects.Experiments shows the proposed method effectively improves the accuracy of fabric defect detection and the accuracy of defect positioning,while reducing the false detection rate and missed detection rate of defect detection,which is significantly higher than the mainstream fabric defect detection algorithm.
关 键 词:布匹瑕疵检测 深度学习 特征过滤 深度卷积神经网络 不平衡分类
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程] TS107[轻工技术与工程—纺织工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.163.51