检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:楚晨晖 陈少林[3] CHU Chenhui;CHEN Shaolin(Wuxi Research Center for Environmental Science and Engineering,Wuxi 214100,China;School of Architecture and Environment Engineering,Wuxi College of Vocational Technology,Wuxi 214100,China;Department of Civil and Airport Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211100,China)
机构地区:[1]无锡环境科学与工程研究中心,无锡214100 [2]无锡城市职业技术学院建筑与环境工程学院,无锡214100 [3]南京航空航天大学土木与机场工程系,南京211100
出 处:《青岛理工大学学报》2023年第2期77-86,共10页Journal of Qingdao University of Technology
基 金:国家自然科学基金资助项目(51978337);2021无锡城市职业技术学院"青蓝工程"项目(202138)。
摘 要:为研究超临界条件下梭形柱的气动力及流场特性,采用剪切应力运输(Shear Stress Transport, SST)模式进行CFD(Computational Fluid Dynamics)数值试验。通过流场性质分析,总结了梭形柱流场分布规律,并讨论了其气动特性形成的机理。首先建立直径为30 cm的圆柱模型,应用Fluent软件模拟其在超临界条件下(Re=7.2×10^(5))的绕流试验。将数值计算结果与已有文献中风洞试验数据对比,验证了数值模拟的合理准确性。然后保持计算参数、网格模型不变,通过改变梭形柱长短轴之比,分别计算不同扁率梭形柱的气动参数。最后通过流场分布特性分析,解释了气动性质变化的机理。通过研究得到以下结论:梭形柱阻力系数平均值、均方差均随梭形柱扁率增加而增加,且阻力系数平均值随扁率成线性增加。给出了阻力系数估算公式,以便快速估算梭形柱阻力系数。升力系数平均值基本维持在0,均方差随扁率先增大后减小。小扁率梭形柱脱涡频率随扁率增加起伏下降,大扁率梭形柱脱涡频率随扁率快速下降。梭形柱的分离角一般在边缘位置,且边缘位置的平均风压系数、脉动风压系数均随扁率增加而增加。In order to investigate the flow field characteristics of fusiform cylinder under supercritical regime,the SST(Shear Stress Transport)model is used in this study for CFD(Computational Fluid Dynamics)numerical experiments.Based on the analysis of the flow field characteristics,the flow field distribution of the fusiform cylinder is summarized,and the formation mechanism of its aerodynamic characteristics is discussed.Firstly,a cylindrical model with a diameter of 30 cm is established,and the software Fluent is used to simulate it under supercritical conditions(Re=7.2×10^(5)).The numerical results are compared with the wind tunnel test data in the literature to verify the reasonable accuracy of the numerical simulation.Then,the aerodynamic parameters of the fusiform cylinder with different oblateness are calculated by changing the ratio of the long axis to the short axis.Finally,the formation mechanism of aerodynamic property change is explained through the analysis of flow field distribution characteristics.The following conclusions are obtained:1)the average value and mean square deviation of drag coefficient of fusiform cylinder increase with the increase of oblateness,the average value of drag coefficient increases linearly with oblateness,the formula for estimating the drag coefficient is given in order to estimate the drag coefficient quickly;2)the average value of lift coefficient is basically maintained at 0,and the mean square deviation first increases and then decreases with the increase of oblateness;3)the vortex shedding frequency of small oblateness fusiform cylinder fluctuates and decreases,while the vortex shedding frequency of large oblateness fusiform cylinder decreases rapidly;4)the separation angle of the fusiform cylinder is generally at the edge,and the average wind pressure coefficient and fluctuating wind pressure coefficient at the edge increase with the increase of oblateness.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.198.133