基于组合分析法的轨道电路分路不良预测  

Prediction of shunting malfunction for track circuit based on combined analysis

在线阅读下载全文

作  者:郑云水[1] 李钰婕 ZHENG Yunshui;LI Yujie(College of Automation&Electrical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学自动化与电气工程学院,甘肃兰州730070

出  处:《Journal of Measurement Science and Instrumentation》2023年第2期233-241,共9页测试科学与仪器(英文版)

基  金:Regional Science Fund Program of National Natural Science Foundation of China(No.61763023)。

摘  要:针对轨道电路故障预测研究受数据制约的现象,本文基于ZPW-2000A型轨道电路的工作原理和传输线理论,建立了轨道电路六端网模型,来仿真模拟3类分路不良故障信号,并对其进行分析。同时,提出变分模态分解和卷积神经网络结合的组合分析法,对原始信号进行变分模态分解提取能量谱特征,再与卷积神经网络提取的深度表达特征进行加权融合,得到敏感特征用于故障预测。轨道电路分路不良预测的实验结果表明:组合分析法能够准确有效预测分路不良故障,预测的准确率达到99.87%,为轨道电路分路不良的预测提供了新的思路。Aiming at fault prediction for track circuit is restricted by data,the six-terminal network model is established based on the working principle and transmission line theory of ZPW-2000A track circuit to simulate and analyze three kinds of shunting malfunction signals.A combined analysis method combining variational mode decomposition and convolutional neural network is proposed.The energy spectrum feature is extracted from the original signal by variational mode decomposition,and the deep feature is extracted by convolution neural network.Then,the sensitive feature for fault prediction is obtained by weighted fusion of the two.The simulation experiments indicate that the proposed method can predict the shunting malfunction accurately and effectively,which can achieve a prediction accuracy of 99.87%and provide a new idea for the prediction of the shunting malfunction for track circuit.

关 键 词:轨道电路 分路不良 变分模态分解 深度学习 特征融合 

分 类 号:U284.2[交通运输工程—交通信息工程及控制]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象