基于多源信息融合的接触式机械密封寿命预测系统设计  

Design of Life Prediction System for Contact Mechanical Seal Based on MultiSource Information Fusion

在线阅读下载全文

作  者:黄胜 黄诚 HUANG Sheng;HUANG Cheng(Office of Educational Administration,Jiangsu Shipping College,Nantong Jiangsu 226010,China)

机构地区:[1]江苏航运职业技术学院教务处,江苏南通226010

出  处:《信息与电脑》2023年第3期132-134,共3页Information & Computer

基  金:南通市科技计划项目“压铸铝合金环保型阳极氧化膜封闭工艺及膜性能研究”(项目编号:MSZ21011)。

摘  要:常规的接触式机械密封寿命预测系统使用概率密度函数获取预测寿命最优解,易受机械退化状态的影响,导致预测效果较差,因此基于多源信息融合设计了一种全新的接触式机械密封寿命预测系统。硬件部分设计了AC220控制保护器、QT7011高速数据采集卡、不间断电源(Uninterruptible Power System,USP)寿命预测电路。软件部分提取了接触式机械密封退化指标,构建了接触式机械密封多源信息融合预测模型,从而完成机械密封寿命的预测。测试结果表明,设计系统在不同监测周期下预测的机械密封寿命与实际剩余的机械密封寿命相拟合,证明设计系统的预测效果较好,具有较高的准确性,有一定的应用价值,可为减少接触式机械密封故障提供帮助。The conventional life prediction system of contact mechanical seal uses the probability density function to obtain the optimal solution of the predicted life,which is easily affected by the mechanical degradation state,resulting in poor prediction effect.Therefore,this paper designs a new life prediction system of contact mechanical seal based on multi-source information fusion.In the hardware part,AC220 control protector,QT7011 high-speed data acquisition card and Uninterruptible Power System(USP)life prediction circuit are designed.In the software part,the degradation index of contact mechanical seal is extracted,and the multi-source information fusion prediction model of contact mechanical seal is constructed,so as to complete the life prediction of mechanical seal.The test results show that the mechanical seal life predicted by the design system under different monitoring periods is consistent with the actual remaining mechanical seal life,which proves that the design system has good prediction effect,high accuracy,and certain application value,and makes a contribution to reducing the failure of contact mechanical seals.

关 键 词:多源信息融合 接触式 机械密封 寿命预测 

分 类 号:TP302.1[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象