检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵敏[1,2,3] 田有亮 熊金波[1,2,4] 毕仁万 谢洪涛 ZHAO Min;TIAN Youliang;XIONG Jinbo;BI Renwan;XIE Hongtao(State Key Laboratory of Public Big Date,Guizhou University,Guiyang 550025,China;College of Computer Science and Technology,Guizhou University,Guiyang,550025,China;Institute of Cryptography&Data Security,Guizhou University,Guiyang 550025,China;College of Computer and Cyber Security,Fujian Normal University,Fuzhou 350117,China;School of Information Science and Technology,University of Science and Technology of China,Hefei 230000,China)
机构地区:[1]贵州大学公共大数据国家重点实验室,贵阳550025 [2]贵州大学计算机科学与技术学院,贵阳550025 [3]贵州大学密码学与数据安全研究所,贵阳550025 [4]福建师范大学计算机与网络空间安全学院,福州350117 [5]中国科学技术大学信息科学与技术学院,合肥230000
出 处:《计算机科学》2023年第5期372-381,共10页Computer Science
基 金:国家重点研发计划(2021YFB3101100);国家自然科学基金(62272123,62272102);贵州省高层次创新型人才项目(黔科合平台人才[2020]6008);贵阳市科技计划项目(筑科合[2021]1-5,筑科合[2022]2-4);贵州省科技计划项目(黔科合平台人才[2020]5017,黔科合支撑[2022]一般065)。
摘 要:针对云环境下数据隐私泄露与基于同态加密的隐私保护神经网络中精度不足的问题,文中提出了一种双服务器协作的隐私保护神经网络训练(PPNT)方案,在云服务器协同训练过程中实现了对数据传输、计算过程及模型参数的隐私保护。首先,为避免使用多项式近似方法实现指数和比较等非线性函数,并提高非线性函数的计算精度,基于Paillier半同态加密方案和加法秘密共享技术设计了一系列基础安全计算协议;其次,在已设计的安全计算协议基础上,构造了神经网络中的全连接层、激活层、Softmax层及反向传播相应的安全计算协议,以实现PPNT方案;最后,通过理论与安全性分析,证明了PPNT方案的正确性及安全性。性能实验结果显示,与PPMLaaS方案相比,PPNT方案的模型精度提高了1.7%,且在安全计算过程中支持客户端离线。Aiming at the problem of data privacy leakage in cloud environment and insufficient accuracy in the privacy-preserving neural network based on homomorphic encryption,a privacy-preserving neural network training scheme(PPNT)is proposed for collaborative dual cloud servers,to achieve the goal of data transmission,computing security and model parameter under the collaborative training process of dual cloud servers.Firstly,in order to avoid using polynomial approximation method to realize nonlinear functions such as exponent and comparison,and improve the calculation accuracy of nonlinear function,a series of secure computing protocols are designed based on Paillier partially homomorphic encryption technology and additive secret sharing scheme.Furthermore,corresponding secure computing protocols of full connection layer,activation layer,softmax layer and back propagation in neural network are constructed to realize PPNT based on the designed secure computing protocols.Finally,theoretical and security analysis guarantees the correctness and security of PPNT.The actual performance results show that compared with the dual server scheme--privacy protection machine learning as a service(PPMLaaS),the model accuracy of PPNT improves by 1.7%,and supports the client offline in the process of secure computing.
关 键 词:Paillier半同态加密 加法秘密共享 安全计算协议 隐私保护 模型训练
分 类 号:TP309.2[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.154.37