检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张帆[1,3] 杨晓忠[2] 王树波[3] Zhang Fan;Yang Xiaozhong;Wang Shubo(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China;School of Mathematics and Physics,North China Electric Power University,Beijing 102206,China;Seismological Bureau of Inner Mongolia Autonomous Region,Hohhot 010051,Inner Mongolia,China)
机构地区:[1]华北电力大学控制与计算机工程学院,北京102206 [2]华北电力大学数理学院,北京102206 [3]内蒙古自治区地震局,内蒙古呼和浩特010051
出 处:《计算机应用与软件》2023年第4期75-79,共5页Computer Applications and Software
基 金:中国地震局地震科技星火计划项目(XH20014);内蒙古自治区地震局局长基金项目(2019JC27)。
摘 要:地震信号可视为时间序列,采用在时间序列数据处理中有较好表现的LSTM神经网络实现天然地震和爆破的分类。对原始信号进行短时傅里叶变换,得到时频谱,拆分为多通道时间序列,作为LSTM神经网络的输入,实现时间序列到标签的分类。通过反复的实验选取了最优的输入数据尺度和模型超参数,选取的模型包含两个堆叠的双向LSTM层的神经网络。训练集上的5折交叉验证结果显示验证集平均准确率达到98.36%,测试集准确率为97.5%。测试结果表明,采用的模型在地震事件分类中有较好的效果。As seismic signal can be regarded as time series,this paper used LSTM neural network which had good performance in time series data processing to realize the classification of natural earthquake and blasting.The time-frequency spectral density map obtained by short-time Fourier transform of original signal was divided into multi-channel time series,which was used as the input of LSTM neural network to realize the classification of time series to tags.Through repeated experiments,the optimal input data scale and model hyperparameters were determined,and the neural network model consisted of two bi-directional LSTM layers.The 5 folds cross-validation results on the training set show that the average accuracy of the verification set is 98.36%,and the accuracy of the test set is 97.5%.The test results show that this model has a good effect in the classification of seismic events.
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171