检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒲钰瑶 陈守全[1] PU Yuyao;CHEN Shouquan(School of Mathematics and Statistics,Southwest University,Chongqing 400715,China)
出 处:《西南师范大学学报(自然科学版)》2023年第4期75-79,共5页Journal of Southwest China Normal University(Natural Science Edition)
摘 要:本文提出了一类位置不变的重尾极值估计量,γ∧n(k_(0),k,r)=1/k_(0)∑_(i=1)^(k_(0))(1/r((X_(n-i,n)-X_(n-k,n)/X_(n-k0,n)-X_(n-k,n))^(r)-1))/1+r/k_(0)∑_(i=1)^(k_(0))(1/r(((X_(n-i,n)-X_(n-k,n))/(X_(n-k 0,n)-X_(n-k,n))^(r)-1))其中:γ>0,k 0是小于k的正整数.得到了此位置不变极值估计量的弱相合性和渐近正态性,并根据其渐近展开式得到k 0的最优选择.In this paper,we propose a class of location-invariant heavy-tailed extreme value estimatorsγ∧n(k_(0),k,r)=1/k_(0)∑_(i=1)^(k_(0))(1/r((X_(n-i,n)-X_(n-k,n)/X_(n-k0,n)-X_(n-k,n))^(r)-1))/1+r/k_(0)∑_(i=1)^(k_(0))(1/r(((X_(n-i,n)-X_(n-k,n))/(X_(n-k 0,n)-X_(n-k,n))^(r)-1))whereγ>0,k 0 is a positive integer less than k.The weak conjunction and asymptotic normality of this location invariant extreme value estimator are obtained,and the optimal choice of k 0 is obtained according to its asymptotic expansion.
分 类 号:O211.4[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15