Suppression of transmembrane sodium currents on the freshly isolated hippocampal neuron cell with continuous infrared light  

在线阅读下载全文

作  者:Fanyi Kong Xinyu Li Ruonan Jiao Kun Liu Xue Han Changkai Sun Changsen Sun 

机构地区:[1]School of Optoelectronic Engineering and Instrumentation Science Dalian University of Technology No.2 Linggong Road,High-tech Zone Dalian 116024,P.R.China [2]School of Electronics and Information Technology Yat-sen University,No.135 Xingang Xi Road Guangzhou 510006,P.R.China [3]School of Biomedical Engineering Dalian University of Technology No.2 Linggong Road,High-Tech Zone Dalian 116024,P.R.China

出  处:《Journal of Innovative Optical Health Sciences》2023年第2期16-27,共12页创新光学健康科学杂志(英文)

基  金:This study was financially supported by the National Natural Science Foundation of China(No.31370835);National Science and Technology Major Special Project on new drug innovation(No.2012ZX09503-001-003);funding from the Dalian University of Technology for the corresponding author(No.DUT21YG121).

摘  要:Physiotherapeutic effects of infrared lasers have been proved in clinic.These infrared-based regulations of the bioelectrical activities can roughly be classied into enhancement and suppression of action potential(AP),which are described by sodium(Na)and potassium(K)transmembrane current equations,named as Hodgkin and Huxley(HH)-model.The enhancement effect is able to evoke or strengthen the AP when infrared light is applied.Its corresponding mechanism is commonly ascribed to the changes of the cell membrane capacitance,which is transiently increased in response to the infrared radiation.The distinctive feature of the suppression effect is to inhibit or reduce the AP by the designed protocols of infrared radiation.However,its mechanism presents more complexity than that in enhancement cases.HH-model describes how the Na current determines the initial phase of AP.So,the enhancement and suppression of AP can be also ascribed to the regulations of the corresponding Na currents.Here,a continuous infrared light at the wavelength of 980 nm(CIS-980)was employed to stimulate a freshly isolated hippocampal neuron in vitro and a suppression effect on the Na currents of the neuron cell was observed.Both Na and K currents,which are named as whole cell currents,were simultaneously recorded with the cell membrane capacitance current by using a patch clamp combined with infrared irradiation.The results demonstrated that the CIS-980 was able to reversibly increase the capacitance currents,completely suppressed Na currents,but little changed K currents,which forms the steady outward whole cell currents and plays a major role on the AP repolarization.A conrmation experiment was designed and carried out by synchronizing tens of milliseconds of infrared stimulation on the same kinds of hippocampal neuron cells.After the blocked K channel,a reduction of Na current amplitude was still recorded.This proved that infrared suppression of Na current was irrelevant to K channel.A membrane capacitance mediation process was preliminarily prop

关 键 词:Na channel suppression AP whole cell currents infrared suppression of bioelectrical activity photothermal effect on the membrane capacitance continuous infrared laser physiotherapy 

分 类 号:TN24[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象