城市交通能源需求和环境排放预测方法及应用  

Prediction Method and Application of Urban Traffic Energy Demand and Environmental Emissions

在线阅读下载全文

作  者:徐苏花 干宏程[1] XU Suhua;GAN Hongcheng(School of Management,University of Shanghai for Science&Technology,Shanghai 200093,China)

机构地区:[1]上海理工大学管理学院,上海200093

出  处:《物流科技》2023年第9期7-11,共5页Logistics Sci-Tech

基  金:国家自然科学基金项目(71871143);上海市曙光学者人才基金项目(15SG41)。

摘  要:以LEAP模型为工具,构建了上海城市客运交通-能源-环境模型,以2019年为基准年,2022—2035年为预测年,分析不同情景下能源需求和环境排放情况。结果显示:除最佳情景外,发展公共交通情景节能减排效果最佳且在2028年实现碳达峰,但不利于NOx减排,缓解道路拥堵情景和推广新能源汽车情景长期节能减排效果不佳;在未来的发展中,个体交通仍然主导能源需求和环境排放,能源依然以汽油为主,上海城市客运交通应以发展公共交通为重点,辅助推广新能源汽车、加大城市道路投资和小汽车限行等措施,环境排放将得到有效控制并提早实现碳达峰。Taking LEAP model as a tool,the urban passenger transport-energy-environment model of Shanghai is constructed.Taking 2019 as the base year and 2022—2035 as the forecast year,the energy demand and emissions in different scenarios are analyzed.The results show that,except for the best scenario,the development of public transport scenario has the best energy-saving and emission-reducing effect,and the peak carbon dioxide emissions will be realized in 2028,but it is not conducive to NOx emission reduction,and the long-term energy-saving and emission-reducing effect is not good in the scenario of alleviating road congestion and promoting new energy vehicles.In the future development,individual transportation will still dominate the energy demand and environmental emissions,and gasoline will still be the main energy source.Shanghai's urban passenger transportation should focus on the development of public transportation,and assist in promoting new energy vehicles,increasing investment in urban roads and restricting the number of cars,etc.,so that environmental emissions will be effectively controlled and peak carbon dioxide emissions will be realized early.

关 键 词:LEAP模型 城市客运交通 情景分析 能源需求与环境排放 

分 类 号:F570[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象