Nutrient optimization for plant growth in Aquaponic irrigation using Machine Learning for small training datasets  被引量:3

在线阅读下载全文

作  者:Sambandh Bhusan Dhal Muthukumar Bagavathiannan Ulisses Braga-Neto Stavros Kalafatis 

机构地区:[1]Department of Electrical and Computer Engineering,Texas A&M University,USA [2]Department of Soil and Crop Sciences,Texas A&M University,USA

出  处:《Artificial Intelligence in Agriculture》2022年第1期68-76,共9页农业人工智能(英文)

摘  要:With the recent trends in urban agriculture and climate change,there is an emerging need for alternative plant culture techniques where dependence on soil can be eliminated.Hydroponic and aquaponic growth techniques have proven to be viable alternatives,but the lack of efficient and optimal practices for irrigation and nutrient supply limits its applications on a large-scale commercial basis.The main purpose of this research was to develop statistical methods and Machine Learning algorithms to regulate nutrient concentrations in aquaponic irrigation water based on plant needs,for achieving optimal plant growth and promoting broader adoption of aquaponic culture on a commercial scale.One of the key challenges to developing these algorithms is the sparsity of data which requires the use of Bolstered error estimation approaches.In this paper,several linear and non-linear algorithms trained on relatively small datasets using Bolstered error estimation techniques were evaluated,for selecting the best method in making decisions regarding the regulation of nutrients in hydroponic environments.After repeated tests on the dataset,it was decided that Semi-Bolstered Resubstitution Error estimation technique works best in our case using Linear Support Vector Machine as the classifier with the value of penalty parameter set to one.A set of recommended rules have been prescribed as a Decision Support System,using the output of the Machine Learning algorithm,which have been tested against the results of the baseline model.Further,the positive impact of the recommended nutrient concentrationson plant growth in aquaponic environments has been elaborately discussed.

关 键 词:HYDROPONIC Aquaponic Training datasets Non-linear algorithms Semi-bolstered error estimation Linear support vector machine Decision Support System 

分 类 号:Q94[生物学—植物学] TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象