Multiple Nontrivial Solutions for Superlinear Double Phase Problems Via Morse Theory  

在线阅读下载全文

作  者:Bin GE Beilei ZHANG Wenshuo YUAN 

机构地区:[1]College of Mathematical Sciences,Harbin Engineering University,Harbin 150001,China

出  处:《Chinese Annals of Mathematics,Series B》2023年第1期49-66,共18页数学年刊(B辑英文版)

基  金:supported by the National Natural Science Foundation of China (No. 11201095);the Fundamental Research Funds for the Central Universities (No. 3072022TS2402);the Postdoctoral research startup foundation of Heilongjiang (No. LBH-Q14044);the Science Research Funds for Overseas Returned Chinese Scholars of Heilongjiang Province (No. LC201502)

摘  要:The aim of this paper is the study of a double phase problems involving superlinear nonlinearities with a growth that need not satisfy the Ambrosetti-Rabinowitz condition.Using variational tools together with suitable truncation and minimax techniques with Morse theory,the authors prove the existence of one and three nontrivial weak solutions,respectively.

关 键 词:Double phase problems Musielak-Orlicz space Variational method Critical groups Nonlinear regularity Multiple solution 

分 类 号:O177[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象