检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:于智斌 田易之[1] YU Zhi-bin;TIAN Yi-zhi(School of Electrical Engineering,Xinjiang University,Urumqi,Xinjiang 830046,China)
机构地区:[1]新疆大学电气工程学院,新疆乌鲁木齐830046
出 处:《电池》2023年第2期160-164,共5页Battery Bimonthly
基 金:国家自然科学基金(51367017),新疆维吾尔自治区科技计划资助(2022B01016-4)。
摘 要:针对锂离子电池荷电状态(SOC)和健康状态(SOH)难以直接测量的问题,提出基于多新息的扩展卡尔曼粒子滤波(MIEKPF)与扩展卡尔曼粒子滤波(EKPF)协同估计SOC和SOH。采用EKPF算法在线辨识参数,并估计SOH,将阻容等辨识结果作为输入,弥补估计SOC时应该考虑电池老化影响产生的误差,实现SOH对SOC的修正,提高模型精度。在新欧洲驾驶周期(NEDC)工况下,进行充放电实验,EKPF算法估计SOH的结果符合实际情况。MIEKPF-EKPF算法最终SOC估计的平均误差为0.48%、最大误差为1.97%、均方根误差为0.58%,仿真结果验证了所提方法的可行性和准确性。Aiming at the problems that the state of charge(SOC)and state of health(SOH)of Li-ion battery were difficult to measure directly,the extended Kalman particle filter based on multiple innovations(MIEKPF)and the extended Kalman particle filter(EKPF)were proposed to estimate SOC and SOH in cooperation.EKPF algorithm was used to identify parameters online and estimate SOH,the identification results such as resistance and capacity were used as the input to compensate for the error that should be considered when estimating SOC due to the influence of battery aging,to achieve the correction of SOH to SOC and improve the accuracy of the model.The charge-discharge experiment was taken under the new European driving cycle(NEDC)operating conditions,the SOH estimation result of the EKPF algorithm was consistent with the actual condition.The average error of the final SOC estimated by MIEKPF-EKPF algorithm was 0.48%,the maximum error was 1.97%,the root mean square error was 0.58%.The simulation results verified the feasibility and accuracy of the proposed method.
关 键 词:荷电状态(SOC) 健康状态(SOH) 扩展卡尔曼粒子滤波(EKPF) 协同估计
分 类 号:TM912.9[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.154