Imaginary-Time Quantum Relaxation Critical Dynamics with Semi-Ordered Initial States  

在线阅读下载全文

作  者:黎智轩 阴帅 舒玉蓉 Zhi-Xuan Li;Shuai Yin;Yu-Rong Shu(School of Physics and Materials Science,Guangzhou University,Guangzhou 510006,China;School of Physics,Sun Yat-Sen University,Guangzhou 510275,China)

机构地区:[1]School of Physics and Materials Science,Guangzhou University,Guangzhou 510006,China [2]School of Physics,Sun Yat-Sen University,Guangzhou 510275,China

出  处:《Chinese Physics Letters》2023年第3期56-61,共6页中国物理快报(英文版)

基  金:the National Natural Science Foundation of China(Grant No.12104109);the Science and Technology Projects in Guangzhou(Grant No.202201020222);supported by the Science and Technology Projects in Guangzhou(Grant No.202102020367);the Fundamental Research Funds for Central Universities,Sun Yat-Sen University(Grant No.22qntd3005)。

摘  要:We explore the imaginary-time relaxation dynamics near quantum critical points with semi-ordered initial states.Different from the case with homogeneous ordered initial states,in which the order parameter M decays homogeneously as M∝τ^(-β/vz),here M depends on the location x,showing rich scaling behaviors.Similar to the classical relaxation dynamics with an initial domain wall in model A,which describes the purely dissipative dynamics,here as the imaginary time evolves,the domain wall expands into an interfacial region with growing size.In the interfacial region,the local order parameter decays as M∝τ^(-β1/vz),withβ_(1)being an additional dynamic critical exponent.Far away from the interfacial region the local order parameter decays as M∝τ-β/vz in the short-time stage,then crosses over to the scaling behavior of M∝τ^(-β1/vz)when the location x is absorbed in the interfacial region.A full scaling form characterizing these scaling properties is developed.The quantum Ising model in both one and two dimensions are taken as examples to verify the scaling theory.In addition,we find that for the quantum Ising model the scaling function is an analytical function andβ_(1)is not an independent exponent.

关 键 词:THEORY SCALING INTERFACIAL 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象