安全行驶下的车用电机轴承的数字孪生故障诊断  被引量:6

Fault diagnosis of vehicle motor-bearings under safe running by digital-twin technology

在线阅读下载全文

作  者:张希[1] 廖宇兰[2] 李沁逸 陈益庆 ZHANG Xi;LIAO Yulan;LI Qinyi;CHEN Yiqing(Guang’an Vocational Technical College,Guang’an 638000,China;College of Electromechanical Engineering,Hainan University,Haikou 570100,China;Rangsit University,Baton Tani 12000,Thailand)

机构地区:[1]广安职业技术学院,广安638000 [2]海南大学机电工程学院,海口570100 [3]兰实大学,泰国巴吞他尼12000

出  处:《汽车安全与节能学报》2023年第2期232-238,共7页Journal of Automotive Safety and Energy

基  金:国家自然科学基金项目资助(52065017);教育部科技发展中心高校产学研创新基金(2018A06035)。

摘  要:为保证汽车的行车安全,结合深度学习与数字孪生技术,来实时完成对电机轴承的故障诊断。用数字孪生技术,将电机轴承的详细属性转换入虚拟空间,构建具有形状、属性、准则和行为的数字孪生体。用形状和属性模块,来融合电机轴承的对象参数,构建基于故障信号处理、诊断和分类的准则模块;结合行为模块所注入的历史记录,来生成数据完成网络训练。用Matlab 2020a完成数据分析。结果表明:用本文方法对常规信号、内圈型、外圈型和滚动体型的诊断准确率分别达到97.5%、97.8%、96.8%和97.1%。从而,与混合神经网络方法和迁移残差网络方法相比,本文方法存在较优的诊断效果和算法性能。To ensure the driving safety of automobiles and timely capture the fault status of motor bearings,a fault diagnosis of motor bearings was completed through the combination of deep learning and digital twin technology.The detailed attributes of the bearings were transformed into virtual space through digital twin technology,and a digital twin body with shape,attributes,criteria,and behavior was constructed.The shape and attribute modules integrated the object parameters of the motor bearings to build a criterion module based on fault signal processing,diagnosis,and classification,and combined the historical records injected by the behavior module to generate data for network training.Data analysis was completed using Matlab 2020a.The results show that the diagnostic accuracies of this method for conventional signals,inner race fault,outer race fault,and rolling element fault are 97.5%,97.8%,96.8%,and 97.1%,respectively.Therefore,this method has superior diagnostic effect and algorithmic performance compared with that by using the methods of the hybrid neural network and the migrated residual network.

关 键 词:汽车安全 电机轴承 故障诊断 数字孪生 深度学习 虚拟空间 

分 类 号:TH165.3[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象