基于CWGAN-SLM的多小波OFDM系统峰均比抑制算法研究  

Research on PAPR reduction algorithm based on CWGAN-SLM for multi-wavelet OFDM system

在线阅读下载全文

作  者:杨光 吴朝阳 聂敏 闫晓红 江帆 YANG Guang;WU Zhaoyang;NIE Min;YAN Xiaohong;JIANG Fan(School of Communication and Information Engineering&School of Artificial Intelligence,Xi’an University of Posts and Telecommunications,Xi’an 710121,China)

机构地区:[1]西安邮电大学通信与信息工程学院(人工智能学院),陕西西安710121

出  处:《通信学报》2023年第4期99-110,共12页Journal on Communications

基  金:国家自然科学基金资助项目(No.61971348,No.62071377);陕西省自然科学基础研究计划基金资助项目(No.2021JM-464)。

摘  要:为满足未来6G星地一体化系统对正交频分复用(OFDM)技术低峰均比(PAPR)的需求,首先提出一种将选择映射(SLM)算法与多小波OFDM技术相结合的算法,但此算法降低PAPR的幅度有限,并且计算复杂度较高。因此,进一步提出基于条件Wasserstein生成对抗网络(CWGAN)和SLM的峰均比抑制算法,即CWGAN-SLM算法,并将其应用于多小波OFDM系统,该算法通过引入CWGAN,生成多个时域备选信号,以达到降低峰均比的目的。仿真结果表明,CWGAN-SLM算法能够有效降低系统的PAPR和计算复杂度,而且具有较低的误码率,与GAN和WGAN相比,CWGAN具有训练容易、稳定性强且PAPR性能好的特点。In order to meet the demand for low peak to average ratio(PAPR)of orthogonal frequency division multiplexing(OFDM)technology in the future 6G satellite-ground integrated system,an algorithm combining selective mapping(SLM)algorithm and multi-wavelet OFDM technology was proposed firstly.However,the PAPR reduction was limited and the computational complexity was high.To solve this problem,a multi-wavelet OFDM PAPR reduction algorithm based on conditional Wasserstein generative adversarial network(CWGAN)and SLM was proposed,which was called CWGAN-SLM algorithm.CWGAN was introduced to generate more time-domain alternative signals to reduce the PAPR in the CWGAN-SLM algorithm.Simulation results indicate that the CWGAN-SLM algorithm greatly reduces the PAPR of the system and the computational complexity,and has a lower bit error rate.Compared with the GAN and WGAN,the CWGAN has the advantages of easy training,strong stability and good PAPR performance.

关 键 词:星地一体化 正交频分复用 峰均比 多小波OFDM 计算复杂度 

分 类 号:TN919.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象