检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李松[1] 舒世泰 郝晓红[1] 郝忠孝[1,2] LI Song;SHU Shi-tai;HAO Xiao-hong;HAO Zhong-xiao(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China;School of Computer Science and Technology,Harbin Institute of Technology,Harbin 150001,China)
机构地区:[1]哈尔滨理工大学计算机科学与技术学院,黑龙江哈尔滨150080 [2]哈尔滨工业大学计算机科学与技术学院,黑龙江哈尔滨150001
出 处:《浙江大学学报(工学版)》2023年第5期911-920,共10页Journal of Zhejiang University:Engineering Science
基 金:国家自然科学基金资助项目(61872105,62072136);黑龙江省自然科学基金资助项目(LH2020F047);黑龙江省留学归国人员科学基金资助项目(LC2018030);河南省科技攻关项目(232102210068);国家重点研发计划资助项目(2020YFB1710200).
摘 要:现有的知识表示方法只考虑三元组本身或一种额外信息,没有充分利用外部信息对知识表示进行语义补充,为此提出一种融合文本描述信息和层次类型信息的知识表示学习方法.使用卷积神经网络(CNN)从文本中提取特征信息;使用基于注意力机制的卷积神经网络区分不同关系的特征可信度,以增强实体关系结构向量在现有知识图谱中的表示,获得丰富的语义信息;使用加权层次编码器来构造层次类型投影矩阵,将实体的所有层次类型投影矩阵与特定关系类型约束结合起来.在WN18、WN18RR、FB15K、FB15K-237和YAGO3-10数据集上,进行链接预测和三元组分类等任务,以分析和验证所提模型的有效性.实验结果表明:在实体预测实验中,所提模型与TransD模型相比,MeanRank(Filter)降低了11.8%,Hits@10提升了3.5%;在三元组分类实验中,所提模型的分类精度比DKRL模型提高了8.4%,比TKRL模型提升了8.5%,充分证明利用外部多源信息能够提高知识表示能力.Existing knowledge representation methods only consider triplet itself or one kind of additional information,and do not make use of external information to semantic supplement knowledge representation.The convolutional neural network was used to extract feature information from text.The convolutional neural network based on attention mechanism was used to distinguish the feature reliability of different relationships,enhance the representation of entity relationship structure vector in the existing knowledge graph and obtain rich semantic information.A weighted hierarchical encoder which combined all the hierarchical type projection matrix of the entity with the relationship-specific type constraints,was used to construct the projection matrix of the hierarchical type,The link prediction and the triplet classification were performed on WN18,WN18RR,FB15K,FB15K-237 and YAGO3-10 datasets to analyze and verify the validity of the proposed model.The experiment showed that in the entity prediction experiment,the proposed model reduced the MeanRank(Filter)by 11.8%compared to the TransD model,and increased Hits@10 by 3.5%.In the triple classification experiment,the classification accuracy of the proposed model was 8.4%higher than the DKRL model and 8.5%higher than the TKRL model,which fully proved that the ability of knowledge representation could be improved by using external multi-source information.
关 键 词:知识图谱 知识表示 多源信息融合 表示学习 链接预测
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.230.177