检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Siddiqui Muhammad Yasir Hyunsik Ahn
机构地区:[1]Department of Robot System Engineering,Tongmyong University,Busan,48520,Korea [2]School of Artificial Intelligence,Tongmyong University,Busan,48520,Korea
出 处:《Computers, Materials & Continua》2023年第4期1847-1861,共15页计算机、材料和连续体(英文)
摘 要:Deep learning has been constantly improving in recent years,and a significant number of researchers have devoted themselves to the research of defect detection algorithms.Detection and recognition of small and complex targets is still a problem that needs to be solved.The authors of this research would like to present an improved defect detection model for detecting small and complex defect targets in steel surfaces.During steel strip production,mechanical forces and environmental factors cause surface defects of the steel strip.Therefore,the detection of such defects is key to the production of high-quality products.Moreover,surface defects of the steel strip cause great economic losses to the high-tech industry.So far,few studies have explored methods of identifying the defects,and most of the currently available algorithms are not sufficiently effective.Therefore,this study presents an improved real-time metallic surface defect detection model based on You Only Look Once(YOLOv5)specially designed for small networks.For the smaller features of the target,the conventional part is replaced with a depthwise convolution and channel shuffle mechanism.Then assigning weights to Feature Pyramid Networks(FPN)output features and fusing them,increases feature propagation and the network’s characterization ability.The experimental results reveal that the improved proposed model outperforms other comparable models in terms of accuracy and detection time.The precision of the proposed model achieved by mAP@0.5 is 77.5%on the Northeastern University,Dataset(NEU-DET)and 70.18%on the GC10-DET datasets.
关 键 词:Defect detection deep learning convolution neural network object detection YOLOv5 shuffleNetv2
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.25.95