Up-to-constants comparison of Liouville first passage percolation and Liouville quantum gravity  

在线阅读下载全文

作  者:Jian Ding Ewain Gwynne 

机构地区:[1]School of Mathematical Sciences,Peking University,Beijing 100871,China [2]Department of Mathematics,The University of Chicago,Chicago,IL 60637,USA

出  处:《Science China Mathematics》2023年第5期1053-1072,共20页中国科学:数学(英文版)

基  金:supported by National Science Foundation of USA (Grant Nos. DMS1757479 and DMS-1953848);supported by Clay Research Fellowship

摘  要:Liouville rst passage percolation(LFPP)with the parameterξ>0 is the family of random distance functions{D_(h)^(ϵ)}ϵ>0 on the plane obtained by integrating e^(ξh),along paths,where{h_(ϵ)}ϵ>0 is a smooth molli cation of the planar Gaussian free eld.Recent works have shown that for allξ>0,the LFPP metrics,appropriately re-scaled,admit non-trivial subsequential limiting metrics.In the caseξ<ξcrit≈0.41,it has been shown that the subsequential limit is unique and de nes a metric onγ-Liouville quantum gravity(LQG)γ=γ(ξ)2(0,2).We prove that for allξ>0,each possible subsequential limiting metric is nearly bi-Lipschitz equivalent to the LFPP metric D_(h)^(ϵ)whenϵis small,even ifϵdoes not belong to the appropriate subsequence.Using this result,we obtain bounds for the scaling constants for LFPP which are sharp up to polylogarithmic factors.We also prove that any two subsequential limiting metrics are bi-Lipschitz equivalent.Our results are an input in subsequent works which shows that the subsequential limits of LFPP induce the same topology as the Euclidean metric whenξ=ξ_(crit)and that the subsequential limit of LFPP is unique whenξ≥ξcrit.

关 键 词:Liouville quantum gravity Gaussian free eld LQG metric Liouville rst passage percolation supercritical LQG 

分 类 号:O411.1[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象