检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡锦龙 左钰婷 郝昱州 舒国钰 王洋 冯敏轩 李雪洁 王晓莹 孙军 丁向东 高志斌 朱桂妹 李保文 Jinlong Hu;Yuting Zuo;Yuzhou Hao;Guoyu Shu;Yang Wang;Minxuan Feng;Xuejie Li;Xiaoying Wang;Jun Sun;Xiangdong Ding;Zhibin Gao;Guimei Zhu;Baowen Li(State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China;School of Microelectronics,Southern University of Science and Technology,Shenzhen 518055,China;Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China;Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China;Paul M.Rady Department of Mechanical Engineering and Department of Physics,University of Colorado,Boulder,Colorado 80305-0427,USA)
机构地区:[1]State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China [2]School of Microelectronics,Southern University of Science and Technology,Shenzhen 518055,China [3]Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China [4]Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China [5]Paul M.Rady Department of Mechanical Engineering and Department of Physics,University of Colorado,Boulder,Colorado 80305-0427,USA
出 处:《Chinese Physics B》2023年第4期11-18,共8页中国物理B(英文版)
基 金:support of the National Natural Science Foundation of China(Grant Nos.12104356 and52250191);China Postdoctoral Science Foundation(Grant No.2022M712552);the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No.Ammt2022B-1);the Fundamental Research Funds for the Central Universities;support by HPC Platform,Xi’an Jiaotong University。
摘 要:Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have led to the inefficient development of thermoelectric materials. In this study, we proposed a two-stage machine learning framework with physical interpretability incorporating domain knowledge to calculate high/low thermal conductivity rapidly. Specifically, crystal graph convolutional neural network(CGCNN) is constructed to predict the fundamental physical parameters related to lattice thermal conductivity. Based on the above physical parameters, an interpretable machine learning model–sure independence screening and sparsifying operator(SISSO), is trained to predict the lattice thermal conductivity. We have predicted the lattice thermal conductivity of all available materials in the open quantum materials database(OQMD)(https://www.oqmd.org/). The proposed approach guides the next step of searching for materials with ultra-high or ultralow lattice thermal conductivity and promotes the development of new thermal insulation materials and thermoelectric materials.
关 键 词:low lattice thermal conductivity interpretable machine learning thermoelectric materials physical domain knowledge
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112