中部六省红色旅游网络关注格局及影响因素的时空分异  被引量:10

Temporal-spatial characteristics of red tourism network attention and its influencing factors in six provinces of central China

在线阅读下载全文

作  者:许家伟[1,2,4] 王伟 杜锦[2,4] XU Jiawei;WANG Wei;DU Jin(Academician Laboratory for Urban and Rural Spatial Data Mining/Collaborative Innovation Center of Urban-Rural Coordinated Development,Henan University of Economics and Law,Zhengzhou 450046,P.R.China;Key Research Institute of Yellow River Civilization and Sustainable Development,Henan University,Kaifeng 475004,P.R.China;School of Cultural Industry and Tourism Management,Henan University,Kaifeng 475004,P.R.China;Henan Urban Planning Institute&Corporation,Zhengzhou 450044,P.R.China)

机构地区:[1]河南财经政法大学河南省城乡空间数据挖掘院士工作站/城乡协调发展河南省协同创新中心,河南郑州450046 [2]河南大学黄河文明与可持续发展研究中心,河南开封475004 [3]河南大学文化产业与旅游管理学院,河南开封475004 [4]河南省城乡规划设计研究总院股份有限公司,河南郑州450044

出  处:《重庆大学学报(社会科学版)》2023年第2期82-96,共15页Journal of Chongqing University(Social Science Edition)

基  金:国家自然科学基金项目(42201226,42171186,42271225,42201185,42171182);河南省哲学社会科学规划项目(2022CJJ135);教育部人文社会科学基金项目(22YJA790050);住房和城乡建设部软科学研究项目(2021-R-067);河南社科联年度调研课题(SKL-2022-2739)。

摘  要:红色旅游是我国新兴的一种专项特色旅游活动形式,具有相对独特的网络关注空间特征和影响因素。文章从时间和空间双视角,以2011—2019年中部六省88个省辖市为研究区域,基于变异系数、地理集中指数等模型,使用百度指数数据,运用ArcGIS10.3软件进行空间分析,揭示中部六省88个省辖市红色旅游网络关注度时空变化特征,并运用地理加权回归分析方法,构建网络关注时空异质性影响因素模型。先后从年际变化、月度差异、“黄金周”分布三方面揭示了红色旅游网络关注度的时间演变特征,从空间整体和局部的角度分析了红色旅游网络关注度的空间演变特征,从自然因素、传统节日和假日制度三方面分析了影响网络关注度时间异质性的因素,从经济、交通、教育和互联网四方面分析了影响红色旅游网络关注度空间异质性的因素。通过将定性与定量分析结果相结合,得出研究结果:红色旅游网络关注度有明显的月份和节假日变化特征,6月和10月分别为年度旅游关注的主、次波峰,“十一”、春节等节假日在节前、节中和节后的网络关注度大体上呈现出“V”型特征。红色旅游网络关注度具有明显的省际差异和市际差异特征,关注度的高值区主要分布在太行山区、伏牛山区、大别山区、罗霄山区等地,从南向北大体上呈现出“S”型的分布特征,省际差异逐渐缩小,但存在着较为明显的市际差异。气候条件、特殊节日和假日制度是影响红色旅游网络关注度时间异质性变化的重要因素;经济发展水平、教育发展水平、网络发展水平以及交通发展水平等因素是造成红色旅游网络关注度空间异质性的重要因素。最后,研究着眼中部六省全域旅游与红色旅游的关系,提出对红色旅游的研究,要以系统理论为指导;红色旅游规划建设要与全域旅游发展战略紧密融合,对接国家发�Red Tourism is a new form of special tourism activities in China,which has a relatively unique network attention space characteristics and influencing factors.On this basis,under the guidance of system theory and from the perspective of time and space,88 provincial-level cities in six central provinces from 2011 to 2019 were chosen as the study area.Based on the models of coefficient of variation and geographical concentration index,by using Baidu index data,and using the software of Arcgis10.3,this paper reveals the temporal and spatial variation characteristics of the attention degree of the red tourism network in 88 provincial-level cities of six central provinces,and constructs the influencing factor model of the spatial and temporal heterogeneity of the network attention by using the method of geographical weighted regression analysis.This paper reveals the time evolution characteristics of red tourism network attention degree from three aspects of inter-annual change,monthly difference and“Golden Week”distribution.This paper analyzes the spatial evolution characteristics of the Red Tourism network attention degree from the angle of the whole and part of the space,and analyzes the factors influencing the time heterogeneity of the network attention degree from three aspects of the natural factors,the traditional festival and the holiday system.This paper analyzes the factors influencing the spatial heterogeneity of red tourism network attention from four aspects of economy,transportation,education and Internet.1)Red tourism network attention has obvious month and holiday characteristics,and June and October are the main and secondary peaks of annual tourism attention,respectively;“November”,Spring Festival and other holidays in the pre-festival,festival and post-festival network attention generally presents a“V”characteristic.2)The attention degree of red tourism network has obvious inter-provincial difference and inter-city difference,and the high value areas of attention degree are mainly distri

关 键 词:红色旅游 百度指数 网络关注度 空间异质性 

分 类 号:F592.7[经济管理—旅游管理] G127[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象