基于多模型平差接力的长时序风暴增水预测方法  

Prediction method of long-term storm surge based on multi-model gradual adjustment

在线阅读下载全文

作  者:杨彬[1] 艾波[1] 商杰 刘清容 于梦超 YANG Bin;AI Bo;SHANG Jie;LIU Qingrong;YU Mengchao(College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,China;North China Sea Marine Forecasting Center of State Oceanic Administration,Qingdao 266061,China)

机构地区:[1]山东科技大学测绘与空间信息学院,山东青岛266590 [2]自然资源部北海预报减灾中心,山东青岛266061

出  处:《海洋预报》2023年第2期32-44,共13页Marine Forecasts

基  金:国家自然科学基金面上项目(62071279);山东科技大学科研创新团队支持计划资助(2019TDJH103)。

摘  要:利用神经网络模型预测未来风暴增水时,预测精度会随预测时序的延伸不断降低。基于长短期记忆(Long Short-Term Memory)神经网络模型,以风速、风向、气压和前时序的风暴增水数据作为模型输入,利用多个模型接力预测风暴增水时间序列,减小误差随模型的迭代累积,建立基于多模型平差接力的长时序风暴增水预测方法。对比不同地点和不同台风下的风暴增水预测分析结果,模型在渤黄海北部区域每月的均方根误差为4~7 cm,在黄海中部区域可控制在10 cm以内,能够较准确预测未来24 h的风暴增水。When predicting storm surge using classical neural network models,the prediction accuracy will continue to decrease with the extension of the time series.To alleviate this problem,we proposed a method of long-term storm surge prediction based on multi-model gradual adjustment.The method is based on the Long Short-Term Memory neural network model,and integrates multiple models to predict the storm surge time series.Data from previous time periods were fed into the model,such as wind speed,wind direction,air pressure,and storm surge data,and the errors accumulated with model iterations were considered.According to the forecast analysis of storm surge in different locations and under different typhoons,the monthly root mean square error of the prediction model is between 4 and 7 cm in the northern part of the Bohai sea and Yellow Sea,and is less than 10 cm in the central part of the Yellow Sea,which indicate the model can predict storm surge in the next 24 hours accurately.

关 键 词:风暴增水 长短期记忆神经网络 时间序列预测 多模型平差接力 

分 类 号:P731.34[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象