检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:贾琛 刘欣怡 张永军[1] 祝宪章 任维成 何庆 冯幼贵 JIA Chen;LIU Xinyi;ZHANG Yongjun;ZHU Xianzhang;REN Weicheng;HE Qing;FENG Yougui(School of Remote Sensing and Information Engineering,Wuhan University,Wuhan 430079,China;Shandong Zhengyuan Aerial Remote Sensing Technology Co.,Ltd.,Jinan 250000,China)
机构地区:[1]武汉大学遥感信息工程学院,湖北武汉430079 [2]山东正元航空遥感技术有限公司,山东济南250000
出 处:《测绘通报》2023年第3期49-54,共6页Bulletin of Surveying and Mapping
基 金:国家自然科学基金(42201474,41871368)。
摘 要:重复纹理是立面中极为常见的特征之一,从立面图像中自动检测重复纹理结构是建筑物立面分析的一个重要环节。本文提出了一种基准线约束的纹理检测方法,以自动检测重复对象的位置和尺寸。该方法首先采用贝叶斯自适应超像素分割算法构建出超像素邻接图,计算色差后,对墙体进行分离获得候选对象;然后,计算得到候选对象的外接矩形,并从原图中提取出直线段对外接矩形进行约束;最后,基于建筑物立面结构的先验知识对建筑物立面纹理进行修复。试验结果表明,本文方法在检测几何形状为矩形纹理时,可实现对纹理位置和尺寸信息的准确检测,以及被遮挡重复对象的有效修复。Repeated texture is one of the most important features in building facades.How to automatically detect repeating textures from facade images is an important part of building facade analysis.This paper proposes a new Baseline Constrained Texture Detection Method to automatically detect the exact location and size of repeating objects.The method first uses Bayesian adaptive superpixel segmentation to construct a superpixel adjacency map,and then separates the wall by calculating chromatic aberration to obtain candidate objects.Secondly,extract straight lines from the original image,and perform preprocessing such as normal classification and line segment clustering on the obtained straight lines.Finally,texture repair is performed based on prior knowledge of building facade structure.The experimental results show that the proposed method can effectively detect the position and size information of repeated textures when detecting repeated textures whose geometric shapes are rectangles,and repair the occluded repeated objects.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.135.39