Computational analysis for fractional characterization of coupled convection-diffusion equations arising in MHD fows  

在线阅读下载全文

作  者:M.HAMID M.USMAN Zhenfu TIAN 

机构地区:[1]School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China [2]Department of Aeronautics and Astronautics,Fudan University,Shanghai 200433,China [3]School of Mathematical Sciences,Jiangsu University,Zhenjiang 212013,Jiangsu Province,China

出  处:《Applied Mathematics and Mechanics(English Edition)》2023年第4期669-692,共24页应用数学和力学(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Nos.12250410244,11872151);the Jiangsu Province Education Development Special Project-2022 for Double First-ClassSchool Talent Start-up Fund of China(No.2022r109);the Longshan Scholar Program of Jiangsu Province of China。

摘  要:The work is devoted to the fractional characterization of time-dependent coupled convection-diffusion systems arising in magnetohydrodynamics(MHD)flows.The time derivative is expressed by means of Caputo’s fractional derivative concept,while the model is solved via the full-spectral method(FSM)and the semi-spectral scheme(SSS).The FSM is based on the operational matrices of derivatives constructed by using higher-order orthogonal polynomials and collocation techniques.The SSS is developed by discretizing the time variable,and the space domain is collocated by using equal points.A detailed comparative analysis is made through graphs for various parameters and tables with existing literature.The contour graphs are made to show the behaviors of the velocity and magnetic fields.The proposed methods are reasonably efficient in examining the behavior of convection-diffusion equations arising in MHD flows,and the concept may be extended for variable order models arising in MHD flows.

关 键 词:higher-dimensional Chelyshkov polynomial(CP) time-dependent magneto-hydrodynamics(MHD)flow fractional convection-diffusion model convergence stability and error bound finite difference and higher-order scheme 

分 类 号:O373[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象