检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jianwei You Qian Ma Lei Zhang Che Liu Jianan Zhang Shuo Liu Tiejun Cui
出 处:《Electromagnetic Science》2023年第1期56-88,共33页电磁科学(英文)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.62201136,62175215,62101124,and 62288101);National Key Research and Development Program of China(Grant Nos.2017YFA0700201,2017YFA0700202,and 2017YFA0700203);the Natural Science Foundation of Jiangsu Province(Grant Nos.BK20210209,BK20212002,and BK20220808);111 Project(Grant No.111-2-05).
摘 要:Electromagnetic(EM)metamaterials are artificially engineered materials with extraordinary EM properties beyond the limit of existing nat-ural materials;thus,they have been widely used to manipulate the amplitude,phase,polarization,frequency,wave vector,waveform,and other degrees of freedom of EM waves in many practical applications.In this review,we will summarize recent advances in this flourishing field of EM metamateri-als,first from the perspectives of the classical regime and then the quantum regime.More specifically,in the classical regime,traditional EM metamate-rials are based on effective medium theory,and they have limitations of fixed functionalities and an inability to control EM waves in real time.To over-come these restrictions,information metamaterials,including digital coding and field-programmable metamaterials,have recently been proposed to en-able real-time manipulation of EM waves based on the theory of information science.By taking advantage of information metamaterials and artificial in-telligence,another crucial milestone of intelligent metamaterials has been achieved in the development of classical metamaterials.After overviewing EM metamaterials in the classical regime,we discuss cutting-edge studies of EM metamaterials in the quantum regime,namely,topological metamaterials and quantum metamaterials.These nonclassical metamaterials show excellent ability to flexibly manipulate the quantum states,and they extend the clas-sical information metamaterials into the field of quantum information science.At the end of this review,we will give some conclusions and perspectives on this fast-evolving field.
关 键 词:Electromagnetic metamaterial Information metamaterial Artificial intelligence Topological metamaterial Quantum metamaterial
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249