检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭月 熊炜[1] 袁旭峰[1] 邹晓松[1] 帅双旭 赵真 Peng Yue;Xiong Wei;Yuan Xufeng;Zou Xiaosong;Shuai Shuangxu;Zhao Zhen(School of Electrical Engineering,Guizhou University,Guiyang 550025,China)
出 处:《电测与仪表》2023年第5期139-144,共6页Electrical Measurement & Instrumentation
基 金:国家自然科学基金资助项目(51667007);贵州省科技计划项目([2019]1058;[2019]1128)。
摘 要:最优潮流是一个非线性优化问题,其具有复杂繁琐、维数高、约束多以及变量多的特性。将其应用于主动配电网也是当下研究热点。文章建立了使主动配电网有功损耗最小的最优潮流模型;考虑配电网可控单元和开关状态,采用改进后的辐射状约束与潮流约束进行变换,合理松弛后变为二阶锥约束,建立混合整数二阶锥规划模型。采用Yalmip工具包进行建模,调用Gurobi商用算法包对其进行求解计算;通过算例对采用粒子群算法与采用混合整数二阶锥规划方法的计算结果进行对比分析,结果证明混合整数二阶锥方法更适用于主动配电网,验证了该方法的高效性和稳定性。Optimal power flow is a nonlinear optimization problem,which is featured with complexity and cumbersome,high dimensionality,many constraints and many variables.Applying it to active distribution networks is also a hot research topic.This paper firstly establishes the optimal power flow model of the active distribution network to minimize the active loss;secondly,considering the controllable unit and switch state of the distribution network,the improved radial constraints and power flow constraints are adopted to transform,and it becomes a second-order cone constraint after reasonable relaxation,and the mixed integer second-order cone programming model is established.The Yalmip toolkit was used for modeling,and the Gurobi commercial algorithm package was used to solve and calculate it.Finally,the calculation results of the particle swarm optimization algorithm and the mixed integer second-order cone programming method are compared and analyzed through an example.It is proved that the mixed integer second-order cone method is more suitable for active distribution networks,and the efficiency and stability of the proposed method are verified.
关 键 词:配电网 最优潮流 有功损耗 支路潮流模型 二阶锥松弛
分 类 号:TM744[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239