检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Bingrui Xu Li Chai Chunlong Zhang
机构地区:[1]College of Engineering,China Agricultural University,Qinghua Rd.(E)No.17,Haidian District,Beijing 100083,PR China [2]International College Beijing,China Agricultural University,Qinghua Rd.(E)No.17,Haidian District,Beijing 100083,PR China
出 处:《Information Processing in Agriculture》2023年第1期106-113,共8页农业信息处理(英文)
基 金:the National Key Research and Development Program of China[Grant numbers:2019YFB1312303].
摘 要:Weeds that grow among crops are undesirable plants and have adversely affected crop growth and yield.Therefore,the study explores corn identification and positioning methods based on machine vision.The ultra-green feature algorithm and maximum betweenclass variance method(OTSU)were used to segment maize corn,weeds,and land;the segmentation effect was significant and can meet the following shape feature extraction requirements.Finally,the identification and positioning of corn were achieved by morphological reconstruction and pixel projection histogram method.The experiment reveals that when a weeding robot travels at a speed of 1.6 km/h,the recognition accuracy can reach 94.1%.The technique used in this study is accessible for normal cases and can make a good recognition effect;the accuracy and real-time requirements of robot recognition are improved and reduced the calculation time.
关 键 词:Machine vision Inter-plant weeding Morphological reconstruction Target recognition
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7