检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王宇亮 杨观赐[1,2] 罗可欣 Wang Yuliang;Yang Guanci;Luo Kexin(Key Laboratory of Advanced Manufacturing Technology of Ministry of Education,Guizhou University,Guiyang 550025,China;State Key Laboratory of Public Big Data,Guizhou University,Guiyang 550025,China;School of Mechanical Engineering,Guizhou University,Guiyang 550025,China)
机构地区:[1]贵州大学现代制造技术教育部重点实验室,贵阳550025 [2]贵州大学公共大数据国家重点实验室,贵阳550025 [3]贵州大学机械工程学院,贵阳550025
出 处:《计算机应用研究》2023年第5期1402-1409,共8页Application Research of Computers
基 金:国家自然科学基金资助项目(62163007,61863005);贵州省科技计划资助项目(黔科合平台人才[2020]6007,黔科合支撑[2023]一般118和[2021]一般439)。
摘 要:自然语言理解作为医疗对话中的关键组成部分,包含意图识别和槽位填充两个重要的子任务。为建立意图和槽位的相互促进关系,实现语义层次上的建模,提出了基于意图—槽位注意机制的医疗咨询意图理解与实体抽取算法。首先,收集医疗信息网站上用户的医疗健康提问文本,基于医学知识归纳总结了24类医疗意图和5种槽位,构建了中文医疗健康咨询数据集(CMISD-UQS);然后,引入槽位选通机制来建模意图和槽位向量之间的显式关系,设计了意图—槽位注意机制层,构建了意图上下文信息以意图标签向量方式嵌入到槽位的方式。在公共数据集ATIS和SNIPS上与八种代表性算法的对比实验结果表明,所提算法优于所比较的八种算法;在CMISD-UQS数据集上的测试结果表明,所提算法的医疗意图识别准确率、语义槽填充F1值、句子级语义框架准确率分别为78.1%、94.9%和73.2%,均优于其他对比算法。Natural language understanding is a key component in medical dialogue,contains two important subtasks of intent classification and slot filling.In order to establish the mutual facilitation relationship between intents and slots and to achieve modeling at the semantic level,this paper proposed an intent understanding and entity extraction algorithm for medical consultation based on the intent-slot attention mechanism.Firstly,this paper collected users’health question texts on medical information websites,summarized 24 types of medical intents and 5 types of slots based on medical knowledge,and constructed the Chinese medical and health consultation dataset(CMISD-UQS).Then,this paper introduced a slot selection pass-through mechanism to model the explicit relationship between intent and slot vectors,and designed an intent-slot attention mechanism layer to construct a method to embed intent context information into slots as intent label vectors.Finally,the results of compa-rative experiments with eight representative algorithms on public datasets ATIS and SNIPS show that the proposed algorithm is better than other algorithms.The test results on CMISD-UQS dataset show that the accuracy of medical intent classification,semantic slot filling F 1 value,and sentence-level semantic frame accuracy of the proposed algorithm reaching 78.1%,94.9%,and 73.2%,respectively,which are better than other comparison algorithms.
关 键 词:意图分类 槽位填充 注意机制 医疗意图 联合识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249