The Spread Speed of Multiple Catalytic Branching Random Walks  

在线阅读下载全文

作  者:Rong-li LIU 

机构地区:[1]School of Mathematics and Statistics,Beijing Jiaotong University,Beijing 100044,China

出  处:《Acta Mathematicae Applicatae Sinica》2023年第2期262-292,共31页应用数学学报(英文版)

基  金:supported in part by the National Natural Science Foundation of China (No.12271374)。

摘  要:In this paper we study the asymptotic behavior of the maximal position of a supercritical multiple catalytic branching random walk(X_(n))on Z.If M_(n) is its maximal position at time n,we prove that there is a constantα>0 such that M_(n)/n converges toαalmost surely on the set of infinite number of visits to the set of catalysts.We also derive the asymptotic law of the centered process M_(n)-αn as n→∞.Our results are similar to those in[13].However,our results are proved under the assumption of finite L log L moment instead of finite second moment.We also study the limit of(X_(n))as a measure-valued Markov process.For any function f with compact support,we prove a strong law of large numbers for the process X_(n)(f).

关 键 词:catalytic branching random walk invariant measure martingale change of measure spine decomposition 

分 类 号:O211.65[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象