检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ye Tian Mou-Fa Guo Duan-Yu Chen
机构地区:[1]College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China [2]Department of Electrical Engineering,Yuan Ze University,Taiwan 32003,China [3]Fuzhou Power Supply Company of State Grid Fujian Electric Power Co.,Ltd.,Fuzhou 350009,China
出 处:《CSEE Journal of Power and Energy Systems》2023年第2期599-611,共13页中国电机工程学会电力与能源系统学报(英文)
基 金:sponsored by the National Natural Science Foundation of China (No.51677030).
摘 要:In resonant grounding systems,most single-phaseto-ground faults evolve from IAFs(Intermittent Arc Faults).Earlier detection of IAFs can facilitate fault avoidance.This work proposes a novel method based on machine learning for detecting IAFs in three steps.First,the feature of zero-sequence current is automatically extracted and selected by a newlydesigned FINET(“For IAFs,Neuron Elaboration Net”),instead of traditional feature selection based on time-frequency decomposition.Moreover,data of the zero-sequence current divided by different time windows are successively input into the trained FINET.A proposed PSF(principal-subordinate factor)analyses the results obtained from FINET to improve anti-interference in the mentioned IAF detection algorithm.Experiments using PSCAD/EMTDC software simulation data show the proposed method is feasible and highly adaptable.In addition,the detection result of on-site recorded data demonstrates the effectiveness of the proposed method in practical resonant grounding systems.
关 键 词:Resonant grounding distribution systems intermittent arc faults(IAFs)detection “For IAFs Neuron Elaboration Net”(FINET) principal-subordinate factor(PSF)
分 类 号:TM862[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117