Primal-Dual ε-Subgradient Method for Distributed Optimization  

在线阅读下载全文

作  者:ZHU Kui TANG Yutao 

机构地区:[1]School of Artificial Intelligence,Beijing University of Posts and Telecommunications,Beijing 100876,China

出  处:《Journal of Systems Science & Complexity》2023年第2期577-590,共14页系统科学与复杂性学报(英文版)

基  金:supported by the National Natural Science Foundation of China under Grant No.61973043。

摘  要:This paper studies the distributed optimization problem when the objective functions might be nondifferentiable and subject to heterogeneous set constraints.Unlike existing subgradient methods,the authors focus on the case when the exact subgradients of the local objective functions can not be accessed by the agents.To solve this problem,the authors propose a projected primaldual dynamics using only the objective function’s approximate subgradients.The authors first prove that the formulated optimization problem can generally be solved with an error depending upon the accuracy of the available subgradients.Then,the authors show the exact solvability of this distributed optimization problem when the accumulated approximation error of inexact subgradients is not too large.After that,the authors also give a novel componentwise normalized variant to improve the transient behavior of the convergent sequence.The effectiveness of the proposed algorithms is verified by a numerical example.

关 键 词:Constrained optimization distributed optimization e-subgradient primal-dual dynamics 

分 类 号:O224[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象