Self-Dual Hadamard Bent Sequences  

在线阅读下载全文

作  者:SHI Minjia LI Yaya CHENG Wei CRNKOVIC Dean KROTOV Denis SOLéPatrick 

机构地区:[1]Key Laboratory of Intelligent Computing Signal Processing,Ministry of Education,School of Mathematical Sciences,Anhui University,Hefei 230601,China [2]State Key Laboratory of Information Security(Institute of Information Engineering),Chinese Academy of Sciences,Beijing 100093,China. [3]LTCI,Télécom ParisParis,91120 Palaiseau,France [4]Secure-IC S.A.S.,104 Bd du Montparnasse,75014 Paris [5]Faculty of Mathematics,University of Rijeka,Novosibirsk 630090,Russia [6]Sobolev Institute of Mathematics,Novosibirsk 630090,Russia [7]Aix Marseille Univ,CNRS,Centrale Marseille,I2M,Marseille,France

出  处:《Journal of Systems Science & Complexity》2023年第2期894-908,共15页系统科学与复杂性学报(英文版)

基  金:supported in part by the National Natural Science Foundation of China under Grant No.12071001;The work of Dean Crnkovi?is supported by Croatian Science Foundation under the project 6732。

摘  要:A new notion of bent sequence related to Hadamard matrices was introduced recently,motivated by a security application(Solé,et al.,2021).The authors study the self-dual class in length at most 196.The authors use three competing methods of generation:Exhaustion,Linear Algebra and Gr?bner bases.Regular Hadamard matrices and Bush-type Hadamard matrices provide many examples.The authors conjecture that if v is an even perfect square,a self-dual bent sequence of length v always exists.The authors introduce the strong automorphism group of Hadamard matrices,which acts on their associated self-dual bent sequences.The authors give an efficient algorithm to compute that group.

关 键 词:Bent sequences bush-type Hadamard matrices Hadanard matrices PUF functions regular Hadamard matrices 

分 类 号:O151.21[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象