Serum Sodium Fluctuation Prediction among ICU Patients Using Neural Network Algorithm:Analysis of the MIMIC-IV Database  

在线阅读下载全文

作  者:Haotian Yu Tongpeng Guan Jiang Zhu Xiao Lu Xiaolu Fei Lan Wei Yan Zhang Yi Xin 

机构地区:[1]School of Life Science,Beijing Institute of Technology,Beijing 100081,China [2]Xuanwu Hospital,Capital Medical University,Beijing 100053,China

出  处:《Journal of Beijing Institute of Technology》2023年第2期188-197,共10页北京理工大学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.12345678)。

摘  要:Sodium homeostasis disorder is one of the most common abnormal symptoms of elderly patients in intensive care unit(ICU),which may lead to physiological disorders of many organs.The current prediction of serum sodium in ICU is mainly based on the subjective judgment of doctors’experience.This study aims at this problem by studying the clinical retrospective electronic medical record data of ICU to establish a machine learning model to predict the short-term serum sodium value of ICU patients.The data set used in this study is the open-source intensive care medical information set Medical Information Mart for Intensive Care(MIMIC)-IV.The time point of serum sodium detection was selected from the ICU clinical records,and the ICU records of 25risk factors related to serum sodium were extracted from the patients within the first 12 h for statistical analysis.A prediction model of serum sodium value within 48 h was established using a feedforward neural network,and compared with previous methods.Our research results show that the neural network learning model can predict the development of serum sodium in patients using physiological indicators recorded in clinical electronic medical records within 12 h,and has better prediction effect than the serum sodium formula and other machine learning models.

关 键 词:serum sodium structured electronic medical record HYPERNATREMIA HYPONATREMIA neural network machine learning 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] R459.7[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象