机构地区:[1]西北农林科技大学机械与电子工程学院,杨凌712100 [2]农业农村部农业物联网重点实验室,杨凌712100 [3]陕西省农业信息感知与智能服务重点实验室 [4]西北农林科技大学农学院,杨凌712100 [5]西北农林科技大学旱区作物逆境生物学国家重点实验室,杨凌712100
出 处:《农业工程学报》2023年第5期128-136,共9页Transactions of the Chinese Society of Agricultural Engineering
基 金:国家重点研发计划(2021YFD1200600);杨凌种业创新中心重点研发项目(YLzy-xm-01)。
摘 要:为了实现田间条件下小麦抗冻性状相关的数量性状基因座(quantitative trait locus, QTL)分析,该研究针对4个试验地491份小麦核心种质资源的抗冻性状,基于无人机多光谱遥感提出了一种高通量表型方法。首先通过光谱植被指数对小麦抗冻性状进行评估,基于机器学习分类算法使用16个光谱植被指数特征构建了小麦冻害评价模型,并完成了光谱特征相关性分析及对评价模型的贡献率分析。对比随机森林(random forests,RF)、分布式梯度增强(extreme gradient boosting,XGBoost)、梯度提升决策树(gradient boosting decision tree,GBDT)及支持向量机(support vector machine,SVM)算法建立的小麦冻害等级评价模型,结果表明,使用XGBoost建立的评价模型准确率最高,达67.94%;16个光谱特征相关性及其对评价模型的贡献率分析表明,简化冠层叶绿素含量指数(simplified canopy chlorophyii content index, SCCCI)对小麦抗冻表型鉴定的贡献率最大。其次,使用SCCCI作为小麦抗冻表型,结合通过全基因组关联分析检测小麦抗冻相关QTL,检测到3个已被证明与抗冻性状相关的QTL,证明了基于无人机获取的光谱特征可以作为小麦抗冻表型定性定量分析指标,可提供小麦抗冻性状遗传解析必需的表型信息。小麦冻害的无人机遥感高通量表型方法的提出促进了小麦抗冻基因功能解锁。Wheat(triticum aestivum l.)breeding technology can face a great challenge on the long cycle,low efficiency,and narrow genetic background.An important breakthrough can be combining the high-throughput phenotyping of in-field wheat and genome-wide association,thereby revealing the genetic variation in dynamic response to environmental stress.Fortunately,the unmanned aerial vehicle(UAV)remote sensing and machine learning can be expected to bridge the genotype–phenotype gap of the wheat in the breeding process.Among them,frost tolerance is an important phenotype target,particularly with the winter survival of wheat in various environments.It is a high demand for the rapid and cost-effective assessment of frost tolerance from the UAV multi-spectral imagery using machine learning.In this study,a genome-wide association study(GWAS)was assessed for the quantitative genomic analysis of wheat frost tolerance.A bi-parental wheat population consisting of 491 doubled haploid lines was also used in four study sites.491 wheat core materials with a relatively consistent growth stage were selected to obtain their high-density genotype data with the 660 K single nucleotide polymorphism(SNP).The UAV-based multi-spectral imagery of the wheat canopy was collected at the overwintering stage at four experimental sites.At the same time,the wheat in-field phenotypes of frost tolerance were investigated by the wheat breeding experts at the same time.The image pre-processing was performed on the features generation of 16 spectral vegetation indices,including image mosaic,geometric correction,radiometric correction and index calculation.Image segmentation was utilized to obtain the features of the wheat canopy using unsupervised clustering.The features correlation analysis and importance analysis were implemented to compare with the in-field investigation,in order to identify quantitative trait loci(QTL)underlying frost tolerance.A comparison was then made on the evaluation models of wheat freezing injury established by random forests(RF)
关 键 词:无人机 遥感 小麦冻害 多光谱 关联分析 机器学习
分 类 号:S127[农业科学—农业基础科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...