利用高光谱遥感技术监测小麦土壤重金属污染  被引量:19

Monitoring heavy metal contamination of wheat soil using hyperspectral remote sensing technology

在线阅读下载全文

作  者:钟亮 钱家炜 储学远 钱志红[3] 王淼 李建龙[1,2,3] ZHONG Liang;QIAN Jiawei;CHU Xueyuan;QIAN Zhihong;WANG Miao;LI Jianlong(Department of Ecology,School of Life Sciences,Nanjing University,Nanjing 210023,China;Department of Materials,School of Physics,Nanjing University,Nanjing 210023,China;School of Computer and Artificial Intelligence,Changzhou University,Changzhou 213164,China)

机构地区:[1]南京大学生命科学学院生态学系,南京210023 [2]南京大学物理学院材料学系,南京210023 [3]常州大学计算机与人工智能学院,常州213164

出  处:《农业工程学报》2023年第5期265-270,共6页Transactions of the Chinese Society of Agricultural Engineering

基  金:国家重点研发计划项目(2018YFD0800201)。

摘  要:为了探讨基于小麦叶片高光谱间接估测土壤重金属含量的潜力,该研究以江苏省宜兴市徐舍镇为研究区域,于2019-2020年采集农田土壤样品和小麦叶片光谱,经7种不同的光谱变换预处理后,以遗传算法(genetic algorithm,GA)优化的偏最小二乘回归算法(partial least squares regression,PLSR)对预处理后的光谱建立土壤重金属镉(Cd)和砷(As)含量的估测模型,并对模型结果进行精度评价。研究结果表明:1)光谱预处理技术能够突出光谱中的一些隐藏信息,对小麦叶片光谱进行微分变换、多元散射校正、标准正态变换等数学变换后更加有利于提取光谱敏感信息。2)GA-PLSR相较于一般的PLSR方法提高了模型精度,将GA用于光谱波段选择可以优化模型精度和提高稳定性。3)土壤Cd含量的最佳估测模型为标准正态变换预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.87、均方根误差为0.04 mg/kg、相对分析误差为2.72;土壤As含量的最佳估测模型为多元散射校正预处理光谱与GA-PLSR结合,其外部验证的决定系数为0.91、均方根误差为0.32 mg/kg,相对分析误差为3.25。因此,能够利用小麦叶片高光谱间接估测土壤重金属Cd和As含量,该研究为将来实现定量、动态、无损遥感监测大面积农田土壤重金属污染状况提供参考依据。An effective monitoring of soil heavy metal content can greatly contribute to the remediation and treatment of heavy metal pollution.This study aims to explore the potential level in the indirect estimation of soil heavy metal content using wheat leaf hyperspectra.22 sampling plots of wheat farmland were evenly selected in the study area of Xushe Town,Yixing City,Jiangsu Province,China.Four sample squares were selected for each sample plot,each of which the hyperspectral data was collected from the soil samples and 16 wheat leaves.Firstly,Savitzky-Golay smoothing(SG)was applied to the wheat leaf spectral data,where the SG-smoothed spectra were marked as the original spectra R.Secondly,seven mathematical transformation methods were selected as the first derivative(FD),second derivative(SD),absorbance transformation(AT),first derivative of absorbance(AFD),second derivative of absorbance(ASD),multiple scatter correction(MSC),and standard normal variate(SNV)for the spectral pre-processing of wheat leaf spectra R.Thirdly,the different pre-processing spectra were filtered by genetic algorithm(GA)for the feature bands,and then the heavy metal content was analyzed using partial least squares regression(PLSR).Finally,the accuracy of the estimation model was evaluated to compare the coefficient of determination(R2),root mean square error(RMSE),and relative percent difference(RPD)of cross-validation and external validation.The results show that:1)The spectral pre-processing technique highlighted some hidden information in the spectra.The differential transformation,multiple scatter correction,and standard normal variate on the wheat leaf spectra were more favorable to extract spectrally sensitive information.2)The genetic algorithm was used to screen 17-25 characteristic bands of soil Cd,and 16-30 characteristic bands of soil As from 230 full bands,which effectively reduced the band redundancy.Meanwhile,GA-PLSR better improved the model accuracy,compared with the general PLSR.It indicated that the genetic algorithm was used

关 键 词:高光谱 遥感 土壤 重金属 小麦农田 光谱变换 土壤-作物场景监测 

分 类 号:S127[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象